Реакции получения оксидов. Способы получения оксидов

Разложение хлоратов

Хлорамты -- группа химических соединений, соли хлорноватой кислоты HClO3. Хлорат анион имеет структуру тригональной пирамиды (dСl--О = 0,1452-0,1507 нм, угол ОСlО = 106°). Анион СlО3- не образует ковалентных связей через атом О и не склонен образовывать координационные связи. Обычно кристаллические вещества, растворимые в воде и некоторых полярных органических растворителях. В твердом состоянии при комнатной температуре довольно стабильны. При нагреве или в присутствии катализатора разлагаются с выделением кислорода. С горючими веществами могут образовывать взрывчатые смеси.

Xлораты являются сильными окислителями как в раствoре, так и в твердом состоянии: смеси безводных хлоратов с серой, углем и другими восстановителями, взрываются при быстром нагревании и ударе. Хотя хлор в хлоратах находится не в высшей степени окисления, окислить его до в водном растворе удается только электрохимически или под действием XeF2. Xлораты металлов переменной валентности обычно неустойчивы и склонны к взрывному распаду. Все хлораты щелочных металлов разлагаются с выделением большого количества тепла на МеСl и О2, с промежуточным образованием перхлоратов. Разложение хлоратов при нагревании рассмотрим на примере хлората калия:

2KClO 3 = 2KCl + 3O 2 ^ (200 °C, в присутствии MnO2, Fe2O3, CuO и др.)

Без катализаторов эта реакция идет с промежуточным образованием перхлората калия:

4KClO3 = 3KClO4 + KCl (400 °C)

который потом разлагается:

KClO4 = KCl + 2O2^ (550--620 °C)

Нужно отметить то, что хлораты калия с восстановителями (фосфором, серой, органическими соединениями) взрывчаты и чувствительны к трению и ударам, чувствительность повышается в присутствии броматов и солей аммония. Из-за высокой чувствительности составов с бертолетовой солью, они практически не применяются для производства промышленных и военных взрывчатых веществ.

Иногда эта смесь используется в пиротехнике как источник хлора для цветнопламенных составов, входит в состав горючего вещества спичечной головки, и крайне редко в качестве инициирующих взрывчатых веществ (хлоратный порох - "сосис", детонирующий шнур, терочный состав ручных гранат вермахта).

Разложение карбонатов

Карбонаты - соли угольной кислоты, имеют состав Мех(СО3) у. Все карбонаты разлагаются при нагревании с образованием оксида металла и углекислого газа:

Na2CO3 > Na2O + CO2^ (при 1000 ?С)

МgCO3 > MgO + CO2^ (при 650 ?С)

Можно так же отметить кислые соли уголной кислоты, которые распадаются на оксид металла, воду и углекислый газ. Гидрокарбонат аммония же распадается уже при t 60 °C быстро распадается на NH3, CO2 и H2O, в пищевой промышленности он классифицируется как эмульгатор.

На процессе разложения, связанном с выделением газов, основано применение карбоната аммония вместо дрожжей в хлебопечении и кондитерской промышленности (пищевая добавка Е503).

Разложение нерастворимых в воде оснований

Гидроксиды металлов, нерастворимые в воде легко высушить а после нагреть. Вещество распадется на оксид металла и воду, так при разложении Cu(OH)2 , который в воде имеет ярко-синюю творожистую структуру, мы можем наблюдать почернение раствора, говорящее нам об образовании оксида меди (II).

Разложение оксидов

Разложение оксидов можно рассмотреть на примере с водой. Разложение воды происходит при очень высоких температурах(порядка 3000°C):

2 H 2 О(ж) + 572 кДж = 2 H 2 (г) + O 2 (г);

Данная реакция проходит в электрической дуге, где как раз сохраняется нужная температура. По данному примеру можно сказать о высокой устойчивости оксидов, разложение которых может являться очень трудоемким и энергозатратным процессом.

2. Классификация, получение и свойства оксидов

Из бинарных соединений наиболее известны оксиды. Оксидами называются соединения, состоящие из двух элементов, одним из которых является кислород, имеющий степень окисления -2. По функциональным признакам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные) . Солеобразующие оксиды, в свою очередь, подразделяются на основные, кислотные и амфотерные.

Названия оксидов образуются с применением слова «оксид» и русского названия элемента в родительном падеже с указанием римскими цифрами валентности элемента, например: SO 2 - оксид серы (IV ), SO 3 - оксид серы (VI ), CrO - оксид хрома (II ), Cr 2 O 3 - оксид хрома (III ).

2.1. Основные оксиды

Основными называются оксиды, взаимодействующие с кислотами (или с кислотными оксидами) с образованием солей.

К основным оксидам относятся оксиды типичных металлов , им соответствуют гидроксиды, обладающие свойствами оснований (основные гидроксиды), причем степень окисления элемента не изменяется при переходе от оксида к гидроксиду, например,

Получение основных оксидов

1. Окисление металлов при нагревании в атмосфере кислорода:

2Mg + O 2 = 2MgO,

2Cu + O 2 = 2CuO.

Этот метод неприменим для щелочных металлов, которые при окислении обычно дают пероксиды и супероксиды, и только литий, сгорая, образует оксид Li 2 O .

2. Обжиг сульфидов:

2 CuS + 3 O 2 = 2 CuO + 2 SO 2 ,

4 FeS 2 + 11 O 2 = 2 Fe 2 O 3 + 8 SO 2 .

Метод неприменим для сульфидов активных металлов , окисляющихся до сульфатов.

3. Разложение гидроксидов (при высокой температуре):

С u (OH ) 2 = CuO + H 2 O .

Этим методом нельзя получить оксиды щелочных металлов.

4. Разложение солей кислородсодержащих кислот (при высокой температуре):

ВаСО 3 = ВаО + СО 2 ,

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2 ,

4 FeSO 4 = 2 Fe 2 O 3 + 4 SO 2 + O 2 .

Этот способ получения оксидов особенно легко осуществляется для нитратов и карбонатов, в том числе и для основных солей:

(ZnOH) 2 CO 3 = 2ZnO +CO 2 + H 2 O.

Свойства основных оксидов

Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера, в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с оксид-ионами О —2 , поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.

1. Большинство основных оксидов не распадаются при нагревании, исключение составляют оксиды ртути и благородных металлов:

2HgO = 2Hg + O 2 ,

2Ag 2 O = 4Ag + O 2 .

2. Основные оксиды при нагревании могут вступать в реакции с кислотными и амфотерными оксидами, с кислотами:

BaO + SiO 2 = BaSiO 3 ,

MgO + Al 2 O 3 = Mg(AlO 2) 2 ,

ZnO + H 2 SO 4 = ZnSO 4 + H 2 O.

3. Присоединяя (непосредственно или косвенно) воду, основные оксиды образуют основания (основные гидроксиды). Оксиды щелочных и щелочноземельных металлов непосредственно реагируют с водой:

Li 2 O + H 2 O = 2 LiOH ,

CaO + H 2 O = Ca (OH ) 2 .

Исключение составляет оксид магния MgO . Из него нельзя получить гидроксид магния Mg (OH ) 2 при взаимодействии с водой.

4. Как и все другие типы оксидов, основные оксиды могут вступать в окислительно-восстановительные реакции:

Fe 2 O 3 + 2Al = Al 2 O 3 + 2Fe,

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O,

4 FeO + O 2 = 2 Fe 2 O 3 .

М.В. Андрюxoва, Л.Н. Бopoдина



Число и разнообразие химических процессов безграничны, как безграничны и формы существования материи и вещества. Чтобы не заблудиться в бескрайнем многообразии химических явлений (реакций), их необходимо классифицировать. Для этого применяют различные признаки и критерии. Одним из самых распространенных способов подразделения химических реакций является их классификация по составу исходных веществ и продуктов реакции. По этому признаку химические реакции делятся на реакции соединения, разложения, замещения и обмена. Примечание. При проведении этих и других опытов не выбрасывайте полученные вещества, сохраните их для дальнейшего использования в герметически закрытой посуде с соответствующими этикетками.

Наблюдения и результаты опытов проделанных реакций каждого типа в отдельности заносятся в таблицы следующего вида:

В эти же таблицы можно внести другие примеры реакций данного типа без проведения натурного эксперимента (виртуальные опыты).
^

Реакции соединения


К реакциям соединения относятся реакции, когда из двух или более веществ получают в качестве продукта реакции только одно вещество.

^ Опыты 1-5. Простые вещества соединяются с кислородом. а) Внесите с помощью пинцета в пламя горелки ленту магния (на пламя не смотреть! ). Магний сгорает ярким пламенем с выделением большого количества тепла:

2Mg + O 2 = 2MgO.

Б) Внесите с помощью пинцета в пламя горелки медную пластинку или проволоку и подержите в средней зоне около минуты. Медь также окисляется кислородом воздуха, однако без признаков горения и выделения тепла:

2Cu + O 2 = 2CuO.

В) Внесите в пламя с помощью ложечки для сжигания веществ немного серы. Обратите внимание, что сера вначале плавится, затем загорается и горит едва заметным голубоватым пламенем с образованием резко пахнущего газа (осторожно, не вдыхать! ):

S + O 2 = SO 2 .

Погасите горящую серу, опустив ложечку в стакан с водой или с песком.

Г) Внесите в пламя с помощью ложечки для сжигания веществ немного фосфора. Обратите внимание, что фосфор воспламеняется без плавления и сгорает ярким пламенем (осторожно! ) с образованием обильного дыма:

4P + 5O 2 = 2P 2 O 5 .

Д) Налейте в пробирку до половины раствор (10%) поваренной соли и опустите в него очищенный железный гвоздь, чтобы часть его не была бы покрыта раствором. Пробирку закройте неплотно (для доступа воздуха) ватным тампоном и оставьте на несколько дней. Обратите внимание на появление ржавчины на поверхности гвоздя. Упрощенно ее образование можно выразить уравнением:

3Fe + 2O 2 = Fe 3 O 4 .

^ Опыты 6-7. Оксиды соединяются с водой . а) Налейте в стакан немного воды и внесите в воду кусочек оксида кальция. Обратите внимание на бурный характер реакции, в результате которой смесь сильно разогревается:

CaO + H 2 O = Ca(OH) 2 .

Образование гидроксида кальция подтвердите с помощью индикатора.

Б) Налейте в колбу немного воды и внесите в колбу горящий фосфор в закрепленной в пробке ложечке для сжигания веществ. Не касайтесь при этом ложечкой поверхности воды (рис. 19).

Рис. 19. Взаимодействие оксида фосфора с водой.

Когда оксид фосфора заполнит колбу, уберите ложечку с горящим веществом в стакан с водой или с песком и вновь закройте колбу другой пробкой. Энергично встряхивайте колбу с водой и оксидом до полного взаимодействия веществ:

P 2 O 5 + H 2 O = 2HPO 3 .

Образование кислоты в колбе подтвердите с помощью индикатора.

^ Опыт 8. Оксиды соединяются между собой. Смешайте и разотрите в ступке оксид свинца (II) (2,2 г) и оксид кремния (0,6 г). Изогните кончик проволочки в виде небольшой петли, наберите ею немного полученной смеси и внесите в пламя горелки. При необходимости повторите эту операцию несколько раз. Смесь сплавляется, образуя маленький стекловидный шарик силиката свинца (II):

PbO + SiO 2 = PbSiO 3 .

^ Опыты 9-10. Металлы соединяются с неметаллами . а) Нагрейте до кипения в пробирке (укрепив ее в штативе вертикально) немного серы и внесите на несколько секунд в ее пары пучок тонкой медной проволоки. Наблюдайте образование бурого дыма:

Б) В пробирку с водой (2-3 мл) добавьте 3-4 капли настойки иода и прибавьте щепотку порошка алюминия (или другого металла). Встряхивайте пробирку и наблюдайте постепенное обесцвечивание раствора:

2Al + 3I 2 = 2AlI 3 .

^ Опыт 11. Соли соединяются с водой. Поместите в пробирку немного (0,5 г) безводного сульфата меди (II) и добавьте 2-3 капли воды. Наблюдайте изменение окраски вследствие образования медного купороса:

CuSO 4 + 5H 2 O = CuSO 4 ·5H 2 O.

^ Опыты 12-14. Сложные вещества реагируют с аммиаком. а) Два ватных тампона смочите концентрированными растворами аммиака и соляной кислоты. Поднесите оба тампона с помощью пинцетов друг к другу и наблюдайте появление белого дыма:

HCl + NH 3 = NH 4 Cl.

Б) К раствору медного купороса (2-3 мл) добавляйте по каплям концентрированный раствор аммиака до образования прозрачного раствора сульфата тетрамминмеди (II) интенсивно синего цвета:

CuSO 4 + 4NH 3 = SO 4 .

Б) К раствору нитрата серебра добавляйте по каплям раствор аммиака. Первоначально выпадает осадок гидроксида серебра, который мгновенно разлагается на воду и оксид серебра коричнево-черного цвета:

AgNO 3 + NH 3 · H 2 O = AgOH↓ + NH 4 NO 3 ;

2AgOH = Ag 2 O↓ + H 2 O.

При дальнейшем добавлении аммиака происходит растворение осадка с образованием гидроксида диамминсеребра:

Ag 2 O + 4NH 3 + H 2 O = 2OH.

^ Опыт 15. Две соли соединяются между собой. Приготовьте насыщенные при 50-60 о С растворы железного купороса и сульфата аммония и тотчас же слейте их в широкий стакан или кристаллизатор. Добавьте к смеси несколько капель концентрированной серной кислоты и охладите при помешивании. Вскоре появляются синевато-зеленые кристаллы соли Мора:

FeSO 4 + (NH 4) 2 SO 4 + 6H 2 O = FeSO 4 ·(NH 4) 2 SO 4 ·6H 2 O.

Оставьте смесь в холодном месте до следующего дня, затем отфильтруйте соль, высушите и сохраните для дальнейшего изучения.
^

Реакции разложения


Реакции разложения чаще всего протекают с поглощением тепла (эндотермические реакции), а по своей сущности противоположны реакциям соединения. Таким образом, к реакциям разложения относятся такие химические явления, когда из одного сложного вещества образуется несколько простых или сложных веществ.

^ Опыт 1. Оксиды разлагаются на исходные вещества. Проведите в приборе для электролиза (рис. 20) разложение воды электрическим током:

2H 2 O = 2H 2 +O 2 .

Если в лаборатории нет прибора для электролиза растворов, изготовьте его сами. Выньте из отработанных электрических батареек два графитовых стержня. Прикрепите к их концам по изолированному проводу (30-40 см), желательно разного цвета. Вырежьте кусочек плотного картона (5х10) и проделайте в нем на расстоянии 2-2,5 см два отверстия по диаметру графитовых стержней, чтобы они плотно держались в картонке. Подключите электроды к источнику постоянного тока напряжением 6-24 вольт (можно использовать батарейки). Опустите электроды в стакан с водой, – электролиз не наблюдается, так как чистая вода практически не проводит электрический ток. Подкислите воду серной кислотой и вновь опустите электроды в раствор. На них выделяются водород и кислород. По количеству пузырьков определите, на каком электроде, какой газ выделяется. Уточните ваше предположение по знаку заряда соответствующего полюса источника тока.

Рис. 20. Прибор для проведения электролиза в растворе.

Опыт можно провести, используя прибор, собранный по схеме (рис. 21). В этом случае легко сравнить объемы водорода и кислорода, выделяющиеся на электродах.


Рис. 21. Схема установки для разложения воды электрическим током.

^ Опыт 2. Соли разлагаются при нагревании. Поместите в пробирку немного годроксокарбоната меди (II) (малахит). Установите пробирку в штативе вертикально и нагрейте вещество. Внесите в пробирку горящую лучинку, она гаснет. Обратите внимание на появлении капель воды на стенках пробирки. На дне пробирки остается порошок оксида меди (II) черного цвета:

(CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O.

Продолжайте нагревать соль до полного ее разложения. Полученный оксид меди сохраните для других опытов.

^ Опыт 3-4. Гидроксиды могут разлагаться при нагревании. а) Обмакните кончик стеклянной палочки в серную кислоту и внесите в пламя горелки. Наблюдайте образование белого "дыма" в результате разложения вещества:

H 2 SO 4 = SO 3 + H 2 O.

Б) Нагрейте в пробирке немного (1-2 г) свежеприготовленной суспензии гидроксида меди (II). Вещество легко разлагается:

Cu(OH) 2 = CuO + H 2 O.

Наблюдайте образование вещества черного цвета.

^ Опыт 5. Дегидратация кристаллогидратов. Поместите 3-5 г мелко истолченного медного купороса в фарфоровую чашку. Установите ее на кольцо штатива и нагревайте при помешивании вещества стеклянной палочкой, удерживая при этом чашечку тигельными щипцами. Наблюдайте постепенное обесцвечивание кристаллогидрата за счет отщепления воды:

CuSO 4 · 5H 2 O = CuSO 4 + 5H 2 O.

Не допускайте излишнего прокаливания, иначе начнется разложение безводного сульфата меди (II). Полученную соль охладите и сохраните в герметически закрытой баночке для других опытов. Отщепление воды от кристаллогидратов происходит также самопроизвольно при их хранении в открытой посуде и в природе. В этом случае процесс отщепления кристаллизационной воды называется выветриванием.

^ Опыт 6. Некоторые вещества разлагаются с выделением тепла. Разотрите в ступке кристаллы дихромата аммония и полученный порошок (3-4 г) насыпьте небольшой кучкой (конусом) на широкую несгораемую подставку. Сильно нагрейте кончик стеклянной палочки в пламени горелки и внесите его в порошок. Тепло стеклянной палочки инициирует реакцию разложения, которая затем протекает самопроизвольно с выделением большого количества тепла:

(NH 4)­ 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.
^

Реакции замещения


К реакциям замещения относят химическое взаимодействие между простым и сложным веществом, в процессе которого атомы простого вещества замещают какие либо атомы в сложном веществе, в результате получаются новое сложное и новое простое вещества. В общем случае реакции замещения протекают в тех случаях, когда химические связи между элементами в сложном веществе – продукте реакции прочнее, чем связи между элементами в структурных частицах исходного соединения. Следует учесть также, что если реакции замещения протекают в растворах, то в процессе может принимать участие и растворитель.

^ Опыт 1. Активные металлы вытесняют водород из воды при обычных условиях. Небольшую пробирку наполните почти доверху водой. Бросьте в нее кусочек натрия величиной с пшеничное зерно. Наблюдайте (не наклоняйтесь над пробиркой! ) бурную реакцию с выделением газа. Поднесите к отверстию пробирки горящую лучинку и убедитесь по звуку воспламенения и по характеру горения, что это – водород. По окончании реакции добавьте в раствор каплю раствора фенолфталеина и убедитесь, что образовалась также щелочь:

2Na + 2H 2 O = 2NaOH + H 2 .

^ Опыт 2. Металл вытесняет водород из кислоты. В небольшую пробирку опустите 2-3 гранулы цинка и добавьте 3-5 мл раствора (1:1) соляной кислоты. Наблюдайте выделение газа. Докажите, что это водород. Выпарите каплю раствора после реакции и убедитесь, что в растворе образовалась соль:

Zn + 2HCl = ZnCl 2 + H 2 .

^ Опыт 3. Магний вытесняет медь из оксида меди (II). Смешайте в ступке порошок магния массой 2 г и оксид меди массой 4 г и смесь поместите в фарфоровый тигель, который в целях пожаробезопасности поставьте в чашку с песком. В смесь поместите магниевую стружку и подожгите ее. Выделившееся тепло инициирует реакцию, которая дальше продолжается самопроизвольно с выделением большого количества тепла:

Mg + CuO = MgO + Cu.

Когда продукты реакции остынут, убедитесь, что образовались белый порошок – оксид магния и металлическая медь.

^ Опыт 4-5. Металлы и неметаллы вступают в реакции замещения с солями. а) Налейте в пробирку раствор (10%) сульфата меди (II) или другой соли меди (II) и опустите в раствор очищенный железный гвоздь. Наблюдайте появление налета меди на поверхности гвоздя и изменение (через некоторое время) окраски раствора:

Fe + CuSO 4 = FeSO 4 + Cu.

Б) Налейте в пробирку раствор (5%) иодида натрия и добавьте несколько капель хлорной воды или раствора отбеливателя "Белизна". Наблюдайте изменение окраски раствора вследствие реакции:

2NaI + Cl 2 = 2NaCl + I 2 .

Добавьте к раствору каплю крахмального клейстера, и вы убедитесь в образовании иода по появлению синей окраски.
^

Реакции обмена


К реакциям обмена относятся реакции между двумя сложными веществами, в процессе которых вещества как бы обмениваются своими составными частями, в результате образуются новые вещества, соответствующие исходным соединениям. Реакции обмена могут происходить и непосредственно между исходными веществами, находящимися в соответствующих агрегатных состояниях, и между их растворами. Главным условием протекания реакций обмена является образование новых более прочных, чем исходные вещества, соединений и (или) их удаление из реакционной среды в виде малорастворимого (выпадение в осадок) или газообразного вещества. Кроме того реакции обмена в водных растворах идут до конца, если одним из продуктов реакции является вода. Для прогнозирования возможности или невозможности протекания реакций обмена в растворах используйте таблицу растворимости веществ.

^ Опыты 1-3. Оксиды вступают в реакции обмена с кислотами, щелочами и солями. а) Наберите в пробирку несколько крупинок оксида меди (II) и прилейте 3-5 мл раствора (1:1) соляной кислоты. Наблюдайте растворение оксида и образование окрашенного раствора:

CuO + 2HCl = CuCl 2 + H 2 O.

Б) Налейте в коническую колбу объемом 150-200 мл 10-15 мл воды и добавьте несколько капель раствора фенолфталеина. Прилейте сюда же по каплям раствор гидроксида натрия (1%) до появления интенсивной малиновой окраски. В ложечку для сжигания веществ наберите немного серы, подожгите ее в пламени горелки и внесите в колбу (не касайтесь ложечкой поверхности раствора), закрыв отверстие влажным ватным тампоном. Наблюдайте обесцвечивание раствора (остаток горящей серы погасите в стакане с водой):

SO 2 + 2NaOH = Na 2 SO 3 + H 2 O.

В) Смешайте в ступке, а затем разотрите мел (5 г) и кварц или чистый песок (3 г). Возьмите кусочек тонкой железной проволочки (30-40 см) и изогните ее конец в виде небольшой петли. Наберите смесь на петлю и, стараясь не рассыпать ее, внесите в пламя горелки. Повторите эту процедуру несколько раз и наблюдайте образование твердой бусинки:

SiO 2 + CaCO 3 = CaSiO 3 + CO 2 .

^ Опыты 4-6. Соли вступают в реакции обмена с кислотами, щелочами и солями. а) Налейте в пробирку немного раствора силиката натрия (Разбавьте силикатный клей в 2-3 раза) и добавьте несколько капель раствора соляной кислоты. Наблюдайте образование бесцветного осадка:

Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl.

Б) Налейте в пробирку немного раствора (5%) соли меди и добавьте несколько капель раствора (5%) щелочи, не допуская ее избытка. Наблюдайте образование голубого осадка:

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4 .

В) Налейте в пробирку немного раствора (5%) хлорида кальция и добавьте по каплям раствор (5%) карбоната натрия. Наблюдайте образование белого осадка:

CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl.

^ Опыт 7. Реакция нейтрализации является реакцией обмена. Налейте в колбу унифицированного прибора 20-30 мл разбавленного раствора любой щелочи и добавьте несколько капель раствора фенолфталеина до появления интенсивной малиновой окраски жидкости. В делительную воронку унифицированного прибора налейте 30-40 мл разбавленного раствора (2-3%) любой, например, азотной кислоты. Концентрации растворов должны быть примерно эквивалентными. Поворачивая кран делительной воронки, добавляйте кислоту к раствору щелочи вначале небольшими порциями, а затем по каплям (при постоянном перемешивании раствора круговыми движениями колбы) до полной нейтрализации щелочи, то есть до обесцвечивания раствора:

NaOH + HNO 3 = NaNO 3 + H 2 O.
^

Опыты, иллюстрирующие несколько типов реакций в одном процессе


Многие процессы протекают значительно сложнее, чем мы их записываем в виде химических уравнений. Зачастую происходят побочные явления или продукты реакции мгновенно претерпевают самопроизвольно дальнейшие превращения. Кроме того, во многих реакциях в растворах активное участие принимает растворитель (вода).

^ Опыт 1. Реакции обмена и разложения в одном процессе. Поместите кусочек мела в пробирку и добавьте немного разбавленной соляной кислоты (1:5). Наблюдайте растворение мела и вспучивание смеси за счет двух реакций:

CaCO 3 + 2HCl = CaCl 2 + H 2 CO 3 ;

H 2 CO 3 = H 2 O + CO 2 .

Обе реакции протекают одновременно, поэтому процесс выражают одним уравнением:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .

^ Опыт 2. Реакции обмена и соединения в одном процессе. К раствору (5%) сульфата железа (II) прилейте немного раствора (5%) щелочи. Наблюдайте образование светлого осадка гидроксида железа (II), который тут же превращается в бурый осадок гидроксида железа (III):

FeSO 4 + 2NaOH = Fe(OH) 2 ↓ + Na 2 SO 4 ;

4 Fe(OH) 2 + 2H 2 O + O 2 = 4Fe(OH) 3 ↓.

Оба процесса можно выразить одним уравнением:

4FeSO 4 + 8NaOH+ 2H 2 O + O 2 = 4Fe(OH) 3 ↓ + 4Na 2 SO 4 .

^ Опыт 3. Реакции обмена и разложения с участием воды в одном процессе. К раствору соли алюминия в пробирке прилейте раствор карбоната натрия. Наблюдайте образование осадка и выделение углекислого газа в результате гидролиза образовавшегося карбоната алюминия и разложения угольной кислоты:

3Na 2 CO 3 + 2AlCl 3 = 6NaCl + Al 2 (CO 3) 3 ;

Al 2 (CO 3) 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 CO 3 ;

H 2 CO 3 = H 2 O + CO 2 .

Процесс можно выразить одним суммарным химическим уравнением реакций:

3Na 2 CO 3 + 2AlCl 3 + 3H 2 O = 6NaCl + 2Al(OH) 3 ↓+ 3CO 2 .
^

Вопросы и задания


1. Приведите примеры различных химических реакций, используемых в быту. К какому типу относятся эти реакции?

2. Реакции часто классифицируют по признаку поглощения и выделения тепла (энергии). Какие из проведенных вами реакций являются эндотермическими, какие – экзотермическими?

3. Реакции, протекающие с выделением света и тепла, называются реакциями горения. Какие из проведенных вами реакций относятся к реакциям горения?

4. Полистайте ваш учебник химии, увидев запись уравнения какой-либо реакции, определите (используя различные способы классификации), к какому типу реакция относится.

Хотелось бы дать возможно более простое определение оксида - это соединение элемента с кислородом. Но существуют кислоты и соли. Рассмотрим соединения H2O2 и BaO2. Перекись водорода является слабой кислотой (она диссоциирует в воде давая ионы водорода и анионы HO2- и O2-2). Пероксид бария - это бариевая соль перекиси водорода. У молекул H2O2 и BaO2 есть кислородный мостик -O-O-, поэтому степень окисления кислорода в этих соединениях -1. В неорганической химии обычно пероксиды к классу оксидов не относят и поэтому необходимо уточнить определение оксида таким образом, чтобы пероксиды в этот класс не попадали. Фтор самый активный неметалл и вслед за ним идет кислород. Формальная степень окисления атома кислорода в оксиде фтора +2, а во всех других оксидах -2. Следовательно, оксидами называют соединения элементов с кислородом, в которых кислород проявляет формальную степень окисления равную -2 (за исключением оксида фтора, где она равна +2).

Один и тот же химический элемент может образовывать с кислородом не один оксид, а несколько, например, у азота известны оксиды N2O, NO, N2O3, NO2, N2O4, N2O5. Во всех этих оксидах степень окисления у кислорода -2, а у азота, соответственно, +1, +2, +3, +4, +4 и +5. У двух оксидов: NO2 и N2O4 степен окисления азота и кислорода совпадают. В названии веществ отражается история развития химии как науки. В период накопления экспериментальных данных в химии названия веществ отражали либо способ их получения (жженая магнезия: MgCO3 ® MgO + CO2), либо характер воздействия на человека (N2O - веселящий газ), либо сферу применения (пурпурно-красная краска "сурик" - Pb3O4) и т.д. По мере того как все большее число людей изучало химию, по мере того как все большее число веществ надо было охарактеризовать и запомнить возникла необходимость просто словами называть формулу вещества. Введение понятий валентность, степень окисления и т.д. влияло на названия веществ. Мы приведем таблицу, в которой даны названия оксидов азота при использовании различных стилей и номенклатур.

Получение оксидов

При изучении данной главы особое внимание будет уделено взаимосвязи "родственных" веществ из разных классов.

Как получить оксиды из простых веществ? Их окислением:

2Mg + O2 = 2MgO, 2C + O2 = 2CO, C + O2 = CO2.

Рассмотрим лишь принципиальную возможность получения оксида из простых веществ. Получение CO и CO2 будет рассмотрено в разделе "Углерод".

Можно ли получить оксиды из оксидов? Да:

2SO2 + O2 = 2SO3, 2SO3 = 2SO2 + O2, Fe2O3 + CO = 2FeO + CO2.

Можно ли получить оксиды из гидроксидов? Да:

Ca(OH)2 CaO + H2O, H2CO3 = CO2 + H2O.

Можно ли получить оксиды из солей? Да:

CaCO3 CaO + CO2, 2Cu(NO3)2 = 2CuO + 4NO2 + O2.

Свойства оксидов

Если посмотреть внимательно реакции, написанные выше, то те из них, в которых оксиды встречались в левой части уравнения, будут говорить нам о свойствах оксидов. Эти общие для всех оксидов свойства относятся к окислительно-восстановительным процессам:

2SO2 + O2 = 2SO3, 2SO3 = 2SO2 + O2, Fe2O3 + CO = 2FeO + CO2, Al + Fe2O3 = Al2O3 + Fe, C + Fe2O3 = CO + 2FeO.

Но тем не менее, свойства оксидов обычно рассматриваются с учетом их классификации.

Свойства основных оксидов

Прежде всего надо показать, что отвечающие им гидроксиды являются основаниями:

CaO + H2O = Ca(OH)2, Ca(OH)2 = Ca2+ + 2OH-,

т.е. оксиды щелочных и щелочно-земельных металлов при взаимодействии с водой дают растворимые в воде основания, которые называются щелочами.

Основные оксиды, реагируя с кислотными или амфотерными оксидами, дают соли:

CaO + SO3 = CaSO4, BaO + Al2O3 = Ba(AlO2)2.

Основные оксиды, реагируя с кислотными или амфотерными гидроксидами, дают соли:

CaO + H2SO4 = CaSO4 + H2O, K2O + Zn(OH)2 = K2ZnO2 + H2O.

Основные оксиды, реагируя с кислыми солями, дают средние соли:

CaO + Ca(HCO3)2 = 2CaCO3 + H2O.

Основные оксиды, реагируя с нормальными солями, дают основные соли:

MgO + MgCl2 + H2O = 2Mg(OH)Cl.

Свойства кислотных оксидов

Отвечающие кислотным оксидам гидроксиды являются кислотами:

SO3 + H2O = H2SO4, H2SO4 = 2H+ + SO42- .

Многие кислотные оксиды, растворяясь в воде, дают кислоты. Но есть и такие кислотные оксиды, которые не растворяются в воде и с ней не взаимодействуют: SiO2.

Кислотные оксиды, реагируя с основными или амфотерными оксидами, дают соли:

SiO2 + CaO = CaSiO3, 3SO3 + Al2O3 = Al2(SO4)3.

Кислотные оксиды, реагируя с основными или амфотерными гидроксидами, дают соли:

SO3 + Ca(OH)2 = CaSO4 + H2O, SO3 + Zn(OH)2 = ZnSO4 + H2O.

Кислотные оксиды, реагируя с основными солями, дают средние соли.

Кислотные оксиды, реагируя с нормальными солями, дают кислые соли:

CO2 + CaCO3 + H2O = Ca(HCO3)2.

Свойства амфотерных оксидов

Отвечающие амфотерным оксидам гидроксиды обладают амфотерными свойствами:

Zn(OH)2 = Zn2+ + 2OH-, H2ZnO2 = 2H+ + ZnO22-.

Амфотерные оксиды не растворяются в вводе.

Амфотерные оксиды, реагируя с основными или с кислотными оксидами, дают соли:

Al2O3 + K2O = 2KAlO2, Al2O3 + 3SO3 = Al2(SO4)3.

Амфотерные оксиды, реагируя с основными или кислотными гидроксидами, дают соли:

ZnO + 2KOH = K2ZnO2 + H2O, ZnO + H2SO4 = ZnSO4 + H2O.

Сегодня мы начинаем знакомство с важнейшими классами неорганических соединений. Неорганические вещества по составу делятся, как вы уже знаете, на простые и сложные.


ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

Э х О у

Н n A

А – кислотный остаток

Ме(ОН) b

ОН – гидроксильная группа

Me n A b

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.

ОКСИДЫ

Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентность равной 2. Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .
Называются они просто - "оксид + название элемента" (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

оксид углерода (II)

Fe 2 O 3

оксид железа (III)

оксид азота (II)

CrO 3

оксид хрома (VI)

Al 2 O 3

оксид алюминия

оксид цинка

N 2 O 5

оксид азота (V)

Mn 2 O 7

оксид марганца (VII)

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

Оксиды металлов Ме х О у

Оксиды неметаллов неМе х О у

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al 2 O 3 ,

Fe 2 O 3 , Cr 2 O 3

> II

неМе

I, II

неМе

CO, NO, N 2 O

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII (Например, CrO 3 -оксид хрома (VI), Mn 2 O 7 - оксид марганца (VII)):


3). Амфотерные оксиды – это оксиды, которым соответствуют основания и кислоты. К ним относятся оксиды металлов главных и побочных подгрупп с валентностью III , иногда IV , а также цинк и бериллий (Например, BeO , ZnO , Al 2 O 3 , Cr 2 O 3 ).

4). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II (Например, N 2 O , NO , CO ).

Вывод:характер свойств оксидов в первую очередь зависит от валентности элемента.

Например, оксиды хрома:

CrO ( II - основный);

Cr 2 O 3 ( III - амфотерный);

CrO 3 ( VII - кислотный).

Классификация оксидов

(по растворимости в воде)

Кислотные оксиды

Основные оксиды

Амфотерные оксиды

Растворимы в воде.

Исключение – SiO 2

(не растворим в воде)

В воде растворяются только оксиды щелочных и щелочноземельных металлов

(это металлы

I «А» и II «А» групп,

исключение Be , Mg )

С водой не взаимодействуют.

В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выпишите оксиды и классифицируйте их.

Получение оксидов

Тренажёр "Взаимодействие кислорода с простыми веществами"

1. Горение веществ (Окисление кислородом)

а) простых веществ

Тренажёр

2Mg +O 2 =2MgO

б) сложных веществ

2H 2 S+3O 2 =2H 2 O+2SO 2

2.Разложение сложных веществ

(используйте таблицу кислот, см. приложения)

а) солей

СОЛЬ t = ОСНОВНЫЙ ОКСИД+КИСЛОТНЫЙ ОКСИД

СaCO 3 =CaO+CO 2

б) Нерастворимых оснований

Ме(ОН) b t = Me x O y + H 2 O

Cu (OH) 2 t =CuO+H 2 O

в) кислородсодержащих кислот

Н n A = КИСЛОТНЫЙ ОКСИД + H 2 O

H 2 SO 3 =H 2 O+SO 2

Физические свойства оксидов

При комнатной температуре большинство оксидов - твердые вещества (СаО, Fe 2 O 3 и др.), некоторые - жидкости (Н 2 О, Сl 2 О 7 и др.) и газы (NO, SO 2 и др.).

Химические свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

1. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

2. Основной оксид + Кислота = Соль + Н 2 О (р. обмена)

3 K 2 O + 2 H 3 PO 4 = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Вода = Щёлочь (р. соединения)

Na 2 O + H 2 O = 2 NaOH

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

1. Кислотный оксид + Вода = Кислота (р. соединения)

С O 2 + H 2 O = H 2 CO 3 , SiO 2 – не реагирует

2. Кислотный оксид + Основание = Соль + Н 2 О (р. обмена)

P 2 O 5 + 6 KOH = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

4. Менее летучие вытесняют более летучие из их солей

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Взаимодействуют как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O = Na 2 [ Zn (OH ) 4 ] (в растворе)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (при сплавлении)

Применение оксидов

Некоторые оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

SO 3 + H 2 O = H 2 SO 4

CaO + H 2 O = Ca ( OH ) 2

В результате часто получаются очень нужные и полезные соединения. Например, H 2 SO 4 – серная кислота, Са(ОН) 2 – гашеная известь и т.д.

Если оксиды нерастворимы в воде, то люди умело используют и это их свойство. Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для приготовления белой масляной краски (цинковые белила). Поскольку ZnO практически не растворим в воде, то цинковыми белилами можно красить любые поверхности, в том числе и те, которые подвергаются воздействию атмосферных осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и подсушивающий порошок для наружного применения.

Такими же ценными свойствами обладает оксид титана (IV) – TiO 2 . Он тоже имеет красивый белый цвет и применяется для изготовления титановых белил. TiO 2 не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей белого цвета. Он входит в состав эмалей для металлической и керамической посуды.

Оксид хрома (III) – Cr 2 O 3 – очень прочные кристаллы темно-зеленого цвета, не растворимые в воде. Cr 2 O 3 используют как пигмент (краску) при изготовлении декоративного зеленого стекла и керамики. Известная многим паста ГОИ (сокращение от наименования “Государственный оптический институт”) применяется для шлифовки и полировки оптики, металлических изделий, в ювелирном деле.

Благодаря нерастворимости и прочности оксида хрома (III) его используют и в полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды многих металлов применяются в качестве пигментов для самых разнообразных красок, хотя это – далеко не единственное их применение.

Задания для закрепления

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выберите из перечня: основные оксиды, кислотные оксиды, безразличные оксиды, амфотерные оксиды и дайте им названия .

3. Закончите УХР, укажите тип реакции, назовите продукты реакции

Na 2 O + H 2 O =

N 2 O 5 + H 2 O =

CaO + HNO 3 =

NaOH + P 2 O 5 =

K 2 O + CO 2 =

Cu(OH) 2 = ? + ?

4. Осуществите превращения по схеме:

1) K → K 2 O → KOH → K 2 SO 4

2) S→SO 2 →H 2 SO 3 →Na 2 SO 3

3) P→P 2 O 5 →H 3 PO 4 →K 3 PO 4