Магнитное поле переменного тока. О реальной структуре электромагнитного поля и его характеристиках распространения в виде плоских волн. Магнитное поле постоянного магнита

Магнит - это тело, которое образует вокруг себя магнитное поле.

Сила, созданная магнитом, будет действовать на определенные металлы: железо, никель и кобальт. Предметы из этих металлов притягиваются магнитом.
(спичка и пробка не притягиваются, гвоздь только к правой половине магнита, скрепка - к любому месту)

Существуют две области, где сила притяжения максимальна. Они называются полюсами. Если магнит подвесить на тонкой нитке, то он развернется определенным образом. Один конец всегда будет указывать на север, а второй - на юг. Поэтому один полюс называют северным, а другой - южным.

Можно наглядно рассмотреть действие магнитного поля, образованного вокруг магнита. Поместим магнит на поверхность, на которую предварительно насыпали металлические опилки. Под действием магнитного поля опилки расположатся в виде эллипсоподобных кривых. По виду этих кривых, можно представить, как располагаются в пространстве линии магнитного поля. Их направление принято обозначать с севера на юг.

Если мы возьмем два одинаковых магнита и попытаемся приблизить их полюсами, то выясним, что разные полюса притягиваются, а одинаковые - отталкиваются.

Наша Земля также имеет магнитное поле, называемое магнитным полем Земли. Стрелка северным концом всегда показывает на север. Следовательно, северный географический полюс Земли является южным магнитным полюсом, так как противоположные магнитные полюса притягиваются. Аналогично, южный географический полюс является северным магнитным полюсом.


Стрелка компаса северным концом всегда показывает на север, так как притягивается южным магнитным полюсом Земли.

Если поместить компас под проволоку, которая натянута в направлении с севера на юг и по которой течет ток, то мы увидим, что магнитная стрелка отклонится. Это доказывает, что электрический ток создает вокруг себя магнитное поле.

Если расположить несколько компасов под проволокой, по которой течет электрический ток, то мы увидим, что все стрелки отклонятся на одинаковый угол. Это значит, что магнитное поле, создаваемое проволокой, одинаково на разных участках. Поэтому можно сделать вывод, что линии магнитного поля для каждого проводника имеют вид концентрических окружностей.

Направление линий магнитного поля можно определить с помощью правила правой руки. Для этого необходимо мысленно обхватить правой рукой проводник с электрическим током таким образом, чтобы вытянутый большой палец правой руки показывал направление электрического тока, тогда согнутые пальцы покажут направление линий магнитного поля.

Если мы скрутим металлическую проволоку в спираль и пустим по ней электрический ток, то магнитные поля каждого отдельного витка суммируются в общее поле спирали.

Действие магнитного поля спирали аналогично действию магнитного поля постоянного магнита. Этот принцип лег в основу создания электромагнита. У него, как и у постоянного магнита, есть южный и северный полюса. Северный полюс находится там, откуда выходят линии магнитного поля.

Сила постоянного магнита не изменяется с течением времени. У электромагнита это по-другому. Изменить силу электромагнита можно тремя способами.

Первый способ. Поместим внутрь спирали металлический сердечник. При этом действия магнитного поля сердечника и магнитного поля спирали суммируются.

Второй способ. Увеличим количество витков спирали. Чем больше витков у спирали, тем больше действие силы магнитного поля.

Третий способ. Увеличим силу электрического тока, который протекает в спирали. Магнитные поля отдельных витков возрастут, следовательно, суммарное магнитное поле спирали также усилится.


Громкоговоритель

В устройство громкоговорителя входит электромагнит и постоянный магнит. Электромагнит, который связан с мембраной громкоговорителя, надевается на жестко закрепленный постоянный магнит. При этом мембрана остается подвижной. Пропустим через электромагнит переменный электрический ток, вид которого зависит от звуковых колебаний. Так как изменяется электрический ток, то в электромагните изменяется действие магнитного поля.

Вследствие этого электромагнит будет притягиваться или отталкиваться от постоянного магнита с различной силой. Причем мембрана громкоговорителя будет совершать точно такие колебания, как и электромагнит. Таким образом, то, что было сказано в микрофон, мы услышим через громкоговоритель.


Звонок

Электрический дверной звонок можно отнести к разряду электрических реле. Причиной прерывающегося звукового сигнала являются периодические замыкания и размыкания электрической цепи.

При нажатии кнопки звонка электрическая цепь замыкается. Язычок звонка притягивается электромагнитом и ударяет в колокольчик. При этом язычок размыкает электрическую цепь. Ток перестает течь, электромагнит не действует и язычок возвращается в исходное положение. Электрическая цепь вновь замыкается, язычок снова притягивается электромагнитом и ударяет в колокольчик. Этот процесс будет продолжаться до тех пор, пока мы нажимаем на кнопку звонка.


Электромотор

Установим свободно вращающуюся магнитную стрелку перед электромагнитом и раскрутим ее. Мы можем поддерживать это движение, если будем включать электромагнит в тот момент, когда магнитная стрелка поворачивается одним и тем же полюсом к электромагниту.

Силы притяжения электромагнита достаточно, чтобы вращательное движение стрелки не прекращалось.

(на картинке магнит получает импульс всякий раз, когда красная стрелка находится рядом и нажимается кнопка. Если нажать кнопку, когда рядом зеленая стрелка, электромагнит останавливается)

Этот принцип заложен в основу электродвигателя. Только в нем вращается не магнитная стрелка, а электромагнит, называющийся якорем, в статично закрепленном подковообразном магните, который называется статором. Из-за повторяющихся замыканий и размыканий цепи, электромагнит, т.е. якорь, будет непрерывно вращаться.

Электрический ток попадает на якорь посредством двух контактов, представляющих собой два изолированных полукольца. Это приводит к тому, что электромагнит постоянно меняет полярность. При нахождении разнополярных полюсов один против другого, двигатель начинает замедлять вращение. Но в этот момент электромагнит меняет полярность, и теперь один против другого находятся одинаковые полюса. Они отталкиваются, и мотор продолжает вращение.

Генератор

Подключим к концам спирали вольтметр и начнем раскачивать перед ее витками постоянный магнит. При этом вольтметр покажет наличие напряжения. Из этого можно заключить, что на электропроводник влияет изменяющееся магнитное поле.

Из этого следует закон электроиндукции: на концах индукционной катушки будет существовать напряжение до тех пор, пока катушка находится в изменяющемся магнитном поле.

Чем больше витков у индукционной катушки, тем большее напряжение возникает на ее концах. Напряжение можно увеличить, усилив магнитное поле или заставив его быстрее меняться. Металлический сердечник, вставленный внутрь индукционной катушки, увеличивает индукционное напряжение, так как магнитное поле усиливается из-за намагничивания сердечника.
(магнитом начинают сильнее махать перед катушкой, в результате чего стрелка вольтметра отклоняется намного больше)

Генератор - это противоположность электромотора. Якорь, т.е. электромагнит, вращается в магнитном поле постоянного магнита. Из-за вращения якоря действующее на него магнитное поле постоянно меняется. Вследствие чего изменяется возникшее индукционное напряжение. Во время полного оборота якоря напряжение половину времени будет положительно и половину - отрицательно. Примером этого является ветряной генератор, который создает переменное напряжение.


Трансформатор

Согласно закону индукции напряжение возникает, если меняется магнитное поле в индукционной катушке. Но магнитное поле катушки будет меняться только в том случае, если в ней возникает переменное напряжение.

Магнитное поле меняется от нуля до конечной величины. Если подключить катушку к источнику напряжения, то возникшее вследствие этого переменное магнитное поле, создаст кратковременное индукционное напряжение, которое будет противодействовать основному напряжению. Чтобы наблюдать возникновение индукционного напряжения, необязательно использовать две катушки. Это можно сделать и с одной катушкой, но тогда такой процесс называется самоиндукцией. Напряжение в катушке достигает своего максимума через некоторое время, когда магнитное поле перестанет изменяться и станет постоянным.

Таким же образом меняется магнитное поле, если мы отключаем катушку от источника напряжения. В этом случае, тоже возникает явление самоиндукции, которое противодействует падающему напряжению. Поэтому напряжение падает до нуля не мгновенно, а с определенным запозданием.

Если мы постоянно подключаем и отключаем источник напряжения к катушке, то магнитное поле вокруг нее будет постоянно меняться. Одновременно возникает и переменное индукционное напряжение. Теперь вместо этого, подключим катушку к источнику переменного напряжения. Спустя некоторое время возникает переменное индукционное напряжение.

Подключим первую катушку к источнику переменного напряжения. Благодаря металлическому сердечнику возникшее переменное магнитное поле будет действовать и на вторую катушку. Это означает, что переменное напряжение можно передать из одной цепи электрического тока в другую, даже если эти цепи не будут связаны одна с другой.

Если мы возьмем две одинаковые по параметрам катушки, то во второй мы можем получить такое же напряжение, что действует на первую катушку. Это явление используется в трансформаторах. Только целью трансформатора является создать во второй катушке другое напряжение, отличное от первой. Для этого вторая катушка должна иметь большее или меньшее количество витков.

Если в первой катушке было 1000 витков, а во второй - 10, то напряжение во второй цепи будет составлять лишь сотую часть от напряжения в первой. Зато сила тока повышается практически в сто раз. Поэтому трансформаторы высокого напряжения необходимы для создания большой силы тока.

1

В данной статье приведены результаты исследований векторных и скалярных магнитных полей постоянных магнитов и определение их распространения.

постоянный магнит

электромагнит

векторное магнитное поле

скалярное магнитное поле.

2. Борисенко А.И., Тарапов И.Е. Векторный анализ и начала тензорного исчисления. – М.: Высшая школа, 1966.

3. Кумпяк Д.Е. Векторный и тензорный анализ: учебное пособие. – Тверь: Тверской государственный университет, 2007. – 158 с.

4. Мак-Коннел А.Дж. Введение в тензорный анализ с приложениями к геометрии, механике и физике. – М.: Физматлит, 1963. – 411 с.

5. Борисенко А.И., Тарапов И.Е. Векторный анализ и начала тензорного исчисления. – 3-е изд. – М.: Высшая школа, 1966.

Постоянные магниты. Постоянное магнитное поле.

Магнит - это тела, обладающие способностью притягивать железные и стальные предметы и отталкивать некоторые другие благодаря действию своего магнитного поля. Силовые линии магнитного поля проходят с южного полюса магнита, а выходят с северного полюса (рис. 1).

Рис. 1. Магнит и силовые линии магнитного поля

Постоянный магнит - изделие из магнитотвёрдого материала с высокой остаточной магнитной индукцией, сохраняющее состояние намагниченности в течение длительного времени. Постоянные магниты изготавливаются различной формы и применяются в качестве автономных (не потребляющих энергии) источников магнитного поля (рис. 2).

Электромагнит - устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки иферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.

Рис. 2. Постоянный магнит

В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Постоянные магниты, изготовленные из магнетита, применялись в медицине с древнейших времен. Царица Египта Клеопатра носила магнитный амулет.

В древнем Китае в «Императорской книге по внутренней медицине» затрагивался вопрос применения магнитных камней для коррекции в теле энергии Ци - «живой силы».

В первые теорию магнетизма разработал французский физик Андре Мари Ампер. Согласно его теории намагниченность железа объясняется существованием электрических токов, которые циркулируют внутри вещества. Свои первые сообщения о результатах опытов Ампер сделал на заседание Парижской академии Наук осенью 1820 года. Понятие “магнитное поле” в физику ввел английский физик Майкл Фарадей. Магниты взаимодействуют посредством магнитного поля, он же ввел понятие магнитных силовых линий.

Векторное магнитное поле

Векторное поле - это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например, вектор скорости ветра в данный момент времени изменяется от точки к точке и может быть описан векторным полем (рис. 3).

Скалярное магнитное поле

Если каждой точке М заданной области пространства (чаще всего размерности 2 или 3) поставлено в соответствие некоторое (обычно - действительное) число u, то говорят, что в этой области задано скалярное поле. Другими словами, скалярное поле - это функция, отображающая Rn в R (скалярная функция точки пространства).

Геннадий Васильевич Николаев по простому рассказывает, показывает и на простых опытах доказывает существование второго типа магнитного поля, которое наука по странной причине не нашла. Со времен Ампера еще было предположение, что оно существует. Открытое Николаевым поле он назвал скалярным, но его еще частенько называют его именем. Николаев привел электромагнитные волны к полной аналогии с обычными механическими волнами. Сейчас физика рассматривает электромагнитные волны, как исключительно поперечные, но Николаев уверен и доказывает, что они так же и продольные или скалярные и это логично, как может вперед распространяться волна, не имея прямого давления, это просто абсурдно. По мнению ученого, наукой продольное поле было скрыто специально, возможно в процессе редактирование теорий и учебников. Сделано это с простым умыслом и согласовано с другими урезаниями.

Рис. 3. Векторное магнитное поле

Первое урезание, которое сделали это отсутствие эфира. Почему?! Потому, что эфир это энергия, или среда, которая находится под давлением. И это давление, если правильно организовать процесс можно использовать как бесплатный источник энергии!!! Второе урезание это убрали продольную волну, это как следствие, что если эфир это источник давления, то есть энергии, то если в нем складывать только поперечные волны, то никакой свободной или бесплатной энергии получить нельзя, нужна обязательно продольная волна.

Тогда встречное наложение волн дает возможность откачивание давления эфира. Часто эту технологию называют нулевой точкой, что в общем правильно. Именно на границе соединения плюса и минуса (повышенного и пониженного давления), при встречном движении волн можно получить так называемую зону Блоха или по простому провал среды (эфира), куда будет привлечена дополнительная энергия среды.

Работа представляет собой попытку практического повторения некоторых опытов описанных в книге Г.В.Николаева “Современная электродинамика и причины ее парадоксальности” и воспроизведение генератора и мотора Стефана Маринова, насколько это возможно в домашних условиях.

Опыт Г.В. Николаева с магнитами: Использовались два круглых магнита от динамиков

Два плоских расположенных на плоскости разноименными полюсами магнита. Притягиваются друг к другу (рис. 4), между тем, как при перпендикулярном расположении их (вне зависимости от ориентации полюсов) сила притяжения отсутствует (присутствует только крутящий момент) (рис. 5).

Теперь разрежем магниты посередине и соединим попарно разными полюсами, образовав магниты первоначального размера (рис. 6).

При расположении этих магнитов в одной плоскости (рис. 7) они вновь будут, например, притягиваться друг к другу, между тем как при перпендикулярном расположении они будут уже отталкиваться (рис. 8). В последнем случае продольные силы, действующие по линии разреза одного магнита, являются реакцией на поперечные силы, действующие на боковые поверхности другого магнита,и наоборот. Существование продольной силы противоречит законам электродинамики. Эта сила является результатом действия скалярного магнитного поля, присутствующего в месте разреза магнитов. Такой составной магнит и называется siberian colia.

Магнитная яма это явление, когда векторное магнитное поле отталкивает, а скалярное магнитное поле притягивает и между ними рождается расстояние.

Библиографическая ссылка

Жангисина Г.Д., Сыздыкбеков Н.Т., Жанбиров Ж.Г., Сагынтай М., Мухтарбек Е.К. ПОСТОЯННЫЕ МАГНИТЫ И ПОСТОЯННЫЕ МАГНИТНЫЕ ПОЛЯ // Успехи современного естествознания. – 2015. – № 1-8. – С. 1355-1357;
URL: http://natural-sciences.ru/ru/article/view?id=35401 (дата обращения: 05.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Что такое постоянный магнит

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом. Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же - как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит - это тело, обладающее своим собственным .

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита - магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.


Характеристики размагничивающего участка материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») - это , необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы - Ампер/метр. А , как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов - порядка 1 Тесла.

Виды и свойства постоянных магнитов

Ферритовые

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне - от -30°C до +270°C.


Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в . В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Альнико (алюминий-никель-кобальт)

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы - до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Самариевые

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом - то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла - кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая и мощными подъемными машинами.


Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов - хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.


Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля. Для примера проведем расчет силы взаимодействия двух постоянных магнитов.

Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы IΔl и просуммировать , действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера - это и будут силы взаимодействия между двумя магнитами.

При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.

Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.

Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.

Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.

Магнитное поле оказывает влияние на:

Перемещающиеся электрические заряды.
Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.

Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).

1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля

Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.

Источники магнитного поля

  • Электрическое поле, меняющееся во времени.
  • Подвижные заряды.
  • Постоянные магниты.

С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.

Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.

Свойства

  • Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
  • Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.

Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.

Правила

Рассмотрим основные правила изображения магнитного поля для различных проводников.

Правило буравчика

Силовая линия изображается в плоскости, которая расположена под углом 90 0 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.

Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.

Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.

Правило буравчика для кольца

Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.

Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.

Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.

Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.

Параметры магнитного поля

  • Сцепление потоков (Ψ ).
  • Вектор магнитной индукции (В ).
  • Магнитный поток (Ф ).

Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l) .

Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 90 0 к направлению поля, при протекающем токе в один ампер:

1 Тл = 1 х Н / (А х м).
Правило левой руки

Правило находит направление вектора магнитной индукции.

Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 90 0 , а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.

Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.

Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.

При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.

Магнитный поток

Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.

Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:

Ф = В * S.

Магнитный поток измеряется в такой единице, как «вебер» , который равен протеканием индукции величиной 1 Тл по площади в 1 м 2 .

Потокосцепление

Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.

В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.

Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф .

Магнитные свойства

Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.

Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.

Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.

Различные вещества можно разделить по свойствам взаимодействия с магнитными полями.

Их разделяют на группы:

Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).

Рассмотренные магнетики также классифицируются еще по двум категориям:

Магнитомягкие материалы . Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении ( , генератор, ).
Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.

Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.

Магнитные цепи

Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием и определяются аналогичными законами математики.

На базе магнитных цепей действуют электрические приборы, индуктивности, . У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.

Если вставить в катушку с током стержень из закаленной стали, то в отличие от железного стержня он не размагничивается после выключения тока, а длительное время сохраняет намагниченность.

Тела, длительное время сохраняющие намагниченность, называют постоянными магнитами или просто магнитами.

Французский ученый Ампер объяснял намагниченность железа и стали электрическими токами, которые циркулируют внутри каждой молекулы этих- веществ. Во времена Ампера о строении атома еще ничего не знали, поэтому природа молекулярных токов оставалась неизвестной. Теперь же мы знаем, что в каждом атоме имеются отрицательно заряженные частицы-электроны, которые при своем движении создают магнитные поля, они и вызывают намагниченность железа и. стали.

Магниты могут иметь самую разнообразную форму. На рисунке 290 изображены дугообразный и полосовой магниты.

Те места магнита, где обнаруживаются наиболее сильные магнитные действия, называют полюсами магнита (рис. 291). У всякого магнита, как и у известной нам магнитной стрелки, обязательно есть два полюса; северный (N) и южный (S).

Поднося магнит к предметам, изготовленным из различных материалов, можно установить, что магнитом притягиваются очень немногие из них. Хорошо притягиваются магнитом чугун, сталь, железо и некоторые сплавы, значительно слабее - никель и кобальт.

В природе встречаются естественные магниты (рис. 292) - железная руда (так называемый магнитный железняк). Богатые залежи магнитного железняка есть у нас на Урале , на Украине, в Карельской АССР, Курской области и во многих других местах.

Железо, сталь, никель, кобальт и некоторые другие сплавы в присутствии магнитного железняка приобретают магнитные свойства. Магнитный железняк позволил людям впервые ознакомиться с магнитными свойствами тел.

Если магнитную стрелку приблизит к другой такой же стрелке, то они повернутся и установятся друг против друга противоположными полюсами (рис. 293). Так же взаимодействует стрелка и с любым магнитом. Поднося к полюсам магнитной стрелки магнит, можно заметить, что северный полюс стрелки отталкивается от северного полюса магнита и притягивается к южному полюсу. Южный же полюс стрелки отталкивается от южного полюса магнита и притягивается северным полюсом.

На основании описанных опытов можно сделать следующее заключение; разноименные магнитные полюсы притягиваются, одноименные отталкиваются.

Взаимодействие магнитов объясняется тем, что вокруг всякого магнита имеется магнитное поле. Магнитное поле одного магнита действует на другой магнит, и, наоборот, магнитное поле второго магнита действует на первый магнит.

С помощью железных опилок можно получить представление о магнитном поле постоянных магнитов. Рисунок 294 дает представление о магнитном поле полосового магнита. Как магнитные линии магнитного поля тока, так и магнитные линии магнитного поля магнита - замкнутые линии. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита.

На рисунке 295, а показаны магнитные линии магнитного поля двух магнитов , обращенных друг к другу одноименными полюсами, а на рисунке 295, б - двух магнитов, обращенных друг к другу разноименными полюсами. На рисунке 296 представлены магнитные линии магнитного поля дугообразного магнита.

Все эти картины легко получить на опыте.

Вопросы. 1. В чем различие в намагничивании с помощью тока куска железа и куска стали? 2, Какие тела называют постоянными магнитами? 3. Как Ампер объяснял намагничивание железа? 4. Как можно теперь объяснить молекулярные токи Ампера? 5. Что называют магнитными полюсами магнита? 6. Какие из известных вам веществ притягиваются магнитом? 7. Как взаимодействуют между собой полюсы магнитов? 8. Как с помощью магнитной стрелки можно определить полюсы у намагниченного стального стержня? 9. Как можно получить представление о магнитном поле магнита? 10. Что представляют собой магнитные линии магнитного поля магнита?