Дифракционная картина отличается от интерференционной тем. Интерференция - что такое? Что такое интерференция и дифракция

Явления интерференции и дифракции света служат доказательствами его волновой природы.

Интерференцией волн называется явление наложения волн, при котором происходит их взаимное усиление в одних точках пространства и ослабление – в других. Постоянная во времени (стационарная) интерференционная картина возникает только при сложении волн равной частоты с постоянной разностью фаз. Такие волны и возбуждающие их источники называют когерентными .

Интерференция света - одно из проявлений его волновой природы, возникает, например, при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой. В данном случае интерференция возникает при сложении когерентных волн 1 и 2 , отразившихся от двух сторон воздушной прослойки. Эту интерференционную картину, имеющую вид концентрических колец, называют кольцами Ньютона в честь И. Ньютона, впервые описал её и установил, что радиусы этих колец для красного света больше, чем для синего.

Считая, что свет – это волны, английский физик Т. Юнг, объяснил интерференцию света следующим образом. Падающий на линзу луч 0 после отражения от выпуклой её поверхности и преломления даёт начало двум отражённым лучам (1 и 2 ). При этом световые волны в луче 2 запаздывают по отношению к лучу 1 на Dj, и разность фаз Dj зависит от «лишнего» пути, который прошёл луч 2 , по сравнению с лучом 1 .

Очевидно, что, если Dj = n l, где n - целое число, то волны 1 и 2 , складываясь, будут усиливать друг друга и, мы, смотря на линзу под эти углом, будем видеть яркое кольцо света данной длины волны. Наоборот, если

где n - целое число, то волны 1 и 2 , складываясь, будут гасить друг друга, и поэтому, смотря на линзу сверху под таким углом, мы будем видеть тёмное кольцо. Таким образом, интерференция волн приводит к перераспределению энергии колебаний между различными близко расположенными частицами среды.

Интерференция зависит от длины волны, и поэтому, измеряя угловые расстояния между соседними минимумами и максимумами интерференционной картины, можно определить длину волны света. Если интерференция происходит в тонких плёнках бензина на поверхности воды или в плёнках мыльных пузырей, то это приводит к окрашиванию этих плёнок во все цвета радуги. Интерференцию используют для уменьшения отражения света от оптических стёкол и линз, что называют просветлением оптики . Для этого на поверхность стекла наносят плёнку прозрачного вещества такой толщины, чтобы разность фаз отражённых от стекла и плёнки световых волн составила .

Дифракция света – огибание световыми волнами краёв препятствий, являющаяся ещё одним доказательством волновой природы света, впервые была продемонстрирована Т. Юнгом в опыте, когда плоская световая волна падала на экран с двумя близко расположенными щелями. Согласно принципу Гюйгенса щели можно рассматривать как источники вторичных когерентных волн. Поэтому, проходя через каждую из щелей, световой пучок уширялся, и на экране в области перекрытия световых пучков от щелей наблюдалась интерференционная картина в виде чередующихся светлых и темных полос. Возникновение интерференционной картины объясняется тем, что волны от щелей до каждой точки P на экране проходят разные расстояния r 1 и r 2 , и соответствующая этому разность фаз между ними определяет яркость точки Р .



Поляризация света

Поляризация световых волн, являющаяся следствием их поперечности, изменяется при отражении, преломлении и рассеивании света в прозрачных средах.

Поперечность световых волн является одним из следствий электромагнитной теории Дж. К. Максвелла и выражается в том, что колеблющиеся в волнах векторы напряжённости электрического поля Е и индукции магнитного поля В перпендикулярны между собой и направлению распространения этих волн. Для описания электромагнитной волны достаточно знать, как изменяется один из этих двух векторов, например, E , который называют световым вектором. Поляризацией света называют ориентацию и характер изменений светового вектора в плоскости, перпендикулярной световому лучу. Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным .

Если при распространении электромагнитной волны световой вектор, сохраняет свою ориентацию, то такую волну называют линейно-поляризованной или плоско-поляризованной , а плоскость, в которой колеблется световой вектор - плоскостью колебаний . Электромагнитная волна, испускаемая каким-либо атомом (или молекулой) в единичном акте излучения, всегда линейно-поляризована. Источником линейно-поляризованного света также являются лазеры .

Если плоскость колебаний электромагнитной волны постоянно и беспорядочно меняется, то свет называют неполяризованным . Естественный свет (солнца, лампы, свечи и т.п.) является суммой излучений огромного числа отдельных атомов, каждый из которых в определённый момент излучает линейно-поляризованные световые волны. Однако, так как плоскости колебаний этих световых волн хаотически изменяются и не согласованы между собой, то суммарный свет получается неполяризованным. Поэтому неполяризованный свет часто называют естественным .

Если амплитуда светового вектора в каком-то направлении больше, чем в остальных, то такой свет называют частично поляризованным . Естественный свет при отражении от неметаллических поверхностей (вода, стекло и т.п.) превращается в частично поляризованным так, что амплитуда светового вектора в направлении, параллельном отражающей плоскости, становится больше. Преломление естественного света на границе двух сред тоже превращает его в частично поляризованный, однако в этих случаях, как правило, амплитуда светового вектора в направлении, параллельном отражающей плоскости, становится меньше.

Естественный свет можно преобразовать в линейно-поляризованный, используя поляризаторы - устройства, пропускающие волны со световым вектором только определенного направления. В качестве поляризаторов часто применяют кристаллы турмалина, который сильно поглощает лучи со световым вектором, перпендикулярным к оптической оси кристалла. Поэтому естественный свет, проходя через пластинку турмалина, становится линейно-поляризованным с электрическим вектором, ориентированным параллельно оптической оси турмалина.

Интерференция и дифракция света

В этих явлениях проявляется волновая природа света. Инте­ресно, что волновая теория света была разработана значительно раньше, чем стала известна электромагнитная природа света.

Интерференция. Интерференцией называется перераспределе­ние интенсивности света в пространстве при наложении световых волн друг на друга. Необходимым условием интерференции воли является юс когерентность. Под когерентностью понимается сог­ласованное в пространстве и времени протекание волновых про­цессов. Строго когерентны лишь монохроматические волны одинаковой частоты. Рассмотрим две когерентные световые волны:

здесь α 1 и α 2 - начальные фазы вонл.

Предположим для простоты, что амплитуды волн равны:


Результатом наложения волн (2.25) является волна

Распишем выражение в квадратных скобках как сумму коси­нусов и получим

Результирующая волна (2.26) также монохроматическая, имеет частоту со и амплитуду , зависящую от начальных фаз склады­ваемых волн

Интенсивность результирующей волны

Для общего случая с различными амплитудами складываемых волн получим

Перекрестный член в правой части (2.28) называется интерфе­ренционным. В зависимости от разности фаз складываемых волн (α 1 - α 2) интенсивность результирующей волны может оказаться и больше, и меньше суммы интенсивностей исходных волн. Вообще, интенсивность результирующего колебания максимальна и равна

(n = 0, 1, 2, ...) и минимальна и равна

Так, при результирующая интенсивность равна нулю, если α 1 – α 2 = π и равна 4I , если α 1 – α 2 = 0.

Все реальные электромагнитные волны не являются строго монохроматическими и строго плоскополяризованными, а сле­довательно, - строго когерентными.



Способность реальных волн интерферировать и характеризует степень их когерентности. Относительно легко обеспечивается когерентность радиоволн. В микроволновом диапазоне источниками когерентных волн являются мазеры, а в оптическом диапазоне - лазеры. Для более высокочастотных электромагнитных волн искусственные коге­рентные источники пока не созданы. Естественные источники, как указывалось выше, всегда излучают некогерентные световые волны. Отсюда следует, что наблюдать интерференцию волн разных естественных источников невозможно.

Однако, если разделить свет от одного источника на две (или несколько) системы волн, оказывается, что эти системы коге­рентны и способны интерферировать. Это объясняется тем, что каждая система представляет излучение одних и тех же атомов источника.



На рис. 2.13 представлена принципиальная система наблюде­ния интерференции света по методу Юнга. Источником света является ярко освещенная цель s в экране Э1. Свет из нее попадает на экран Э2, в котором имеются две одинаковые узкие щели s 1 и s 2 . Щели s 1 и s 2 можно рассматривать как два когерентных источника.

Результат интерференции наблюдается на экране ЭЗ в виде чередующихся темных (минимумы) и светлых (максимумы) полос, параллельных друг другу.


Конкретно результат интерференции зависит от соотношения фаз волн в данной точке экрана. Если волны приходят в фазе (рис. 2.14), они усиливают друг друга, наблюдается максимум; если в противофазе - минимум (рис. 2.15). Соотношение фаз зависит от длины волны света λ в вакууме, расстояния между целями - d , а также угла θ , под которым ведется наблюдение.

Рассмотрим результат наложения волн в некоторой точке Р , отстоящей от осевой линии на расстояние х (см. рис. 2.13).

Разность хода лучей определится из соотношения

Для получения различимой интерференционной картины надо иметь следовательно, можно принять

С другой стороны, . Из рис. 2.14 следует, что если на разности хода укладывается целое число длин волн λ, то в тогчку наблюдения Р 1 волны приходят в фазе, усиливают друг друга, что соответствует максимуму. Условие интерференционных максимумов

Если же на разности хода укладывается полуцелое число длин волн, в точку наблюдения Р 2 они приходят в противофазе, гасят друг друга, что соответствует минимуму (см. рис. 2.15).

Условие интерференционных минимумов


В центре экрана 33 (т.О) будет наблюдаться центральный - максимум - максимум нулевого порядка. Знаки «±» соответству­ют расположению максимумов и минимумов по обе стороны сим­метрично от центрального максимума. Число m определяет поря­док интерференционных максимумов и минимумов. Расстояние между двумя соседними максимумами (или минимумами) называется шириной интерференционной полосы ∆х . Оно равно и постоянно для данного опыта.

Дифракция света . Если свет распространяется в однородной области пространства, и длина световой волны, пренебрежимо мала по сравнению с характеристическими размерами области, то распространение света подчиняется законам геометрической оптики. В этом случае пользуются понятием светового луча, т.е. весьма узкого пучка света, распространяющегося прямолинейно. В том же случае, если в области распространения имеются резкие оптические неоднородности (отверстия, препятствия, границы непрозрачных тел и т. п.), размер которых сравним с длиной волны света, возникает дифракция - огибание световыми волна­ми.препятствий, проникновение в область геометрической тени, т.е. отклонение от законов геометрической оптики.

По физическому смыслу дифракция не отличается от интерфе­ренции. Оба эти явления связаны с перераспределением интен­сивности светового потока в результате наложения когерентных волн. Рассчитывать распределение света в результате дифрак­ции - дифракционную картину - позволяет принцип Гюйгенса- Френеля (1815 г.). Он формулируется в виде двух положений;

Каждый элемент пространства, до которого доходит фронт распространяющейся световой волны, становится источником вторичных световых волн; эти волны сферические; огибающая этих волн дает положение волнового фронта в следующий мо­мент времени;

Вторичные волны когерентны, между собой, поэтому интерферируют при наложении.

Рассмотрим в качестве примера дифракцию плоских световых воли (дифракцию Фраунгофера) на щели. Ширина щели сравни­ма с длиной световой волны. Пусть плоская монохроматическая волна с длиной волны λ падает нормально плоскости щели MN (рис. 2.16).

Каждая точка щели, до которой дошел фронт падающей вол­ны, становится источником вторичных сферических волн, и свет, пройдя узкую щель, распространяется по всем направлениям.


Возьмем произвольное направление хода лучей от щели под углом φ (рис. 2.17). Ясно, что, луч из точки N отстает от луча из точки М на расстояние NF . Это расстояние называется разностью хода лучей. Если ширина щели MN - а, то разность хода равна NF = ∆ = a sinφ. Для анализа удобно разбить щель на несколько зон так, чтобы разность хода, лучей от границ каждой зоны была равна λ/2. При этом волны, соответствующие лучам, будут нахо­диться в противофазе (иметь сдвиг на π). Действительно, фаза волны

Общее число зон будет равно


Вторичные лучи фокусируются собирающей линзой и проеци­руются на экран (рис. 2.18). Согласно принципу Гюйгенса-Френеля вторичные волны интерферируют. Соседние лучи ввиду противофазности соответствующих волн, интерферируя, гасят друг друга. Следовательно, если на щели укладывается четное число зон, то в точке В будет минимум:


а если не четное – то максимум.

Здесь m - порядок минимума (максимума). В прямом направле­нии свет дает центральный максимум (точка B 0). Распределение интенсивности на экране называется дифракционным спектром.

Если падающий на щель свет монохроматический (например, желтый), то дифракционный спектр будет представлять собой чередующиеся темные и желтые полоски. Если направлять на щель белый свет, являющийся суперпозицией семи монохромати­ческих волн, то для каждой длины волны λ i максимумы и мини­мумы будут наблюдаться под своими углами (φ i) max и (φ i) m in . Дифракционная картина будет выглядеть как чередование “радуг” и темных промежутков, в центре картины будет неокрашенный центральный максимум (максимум нулевого порядка).

Система из большого числа одинаковых и параллельных друг другу щелей называется дифракционной решеткой. Дифракцион­ный спектр от решетки значительно сложнее, чем спектр от од­ной щели, так как здесь дополнительно интерферируют световые волны от разных щелей. Вместе с тем полосы получаются значи­тельно более яркими, так как через решетку проходит больше света.

Для электромагнитного излучения рентгеновского диапазона естественными дифракционными решетками являются простран­ственные кристаллические решетки. Это объясняется тем, что расстояния между узлами решеток сравнимы с длинами волн рентгеновского излучения.

Объяснение прямолинейного распространения света. С по­мощью принципа Гюйгенса-Френеля можно объяснить прямоли­нейное распространение света. Пусть свет излучается точечным монохроматическим источником S (рис. 2.19).

Согласно принципу Гюйгенса-Френеля заменим действие ис­точника S действием вторичных воображаемых источников, рас­положенных на, вспомогательной сфере Ф, являющейся волновой поверхностью сферической световой волны. Эта поверхность раз­бивается на кольцевые зоны так чтобы расстояния от краев зон до точки М отличались на λ/2. Это означает, что волны, приходящие в точку М от каждой зоны отличаются по фазе на π, т. е. любые две «соседние» волны противофазный.

Амплитуды этих волн при наложении вычитаются, поэтому амплитуда результирующей волны в точке М:


где А 1,2,…, i , …, n - амплитуда световых волн, возбуждаемых соответ­ствующими зонами. Ввиду очень большого числа зон можно считать, что амплитуда Аi , равна среднему значению амплитуд волн, возбуждаемых примыкающими зонами:

Действие всей волны на точке М сводится к действию се малого участка, меньшего, чем центральная зона. Радиус первой зоны имеет порядок десятых долей миллиметра, поэтому распро­странение света от S к М происходит как бы внутри узкого канала вдоль SM , т. е. прямолинейно.

Наблюдения за распространением волн на поверхности воды от двух или большего числа источников показывают, что волны проходят одна через другую, совершенно не влияя друг на друга. Точно так же не влияют друг на друга и звуковые волны. Когда играет оркестр, то звуки от каждого инструмента приходят к нам точно такими же, как если бы играл отдельно каждый инструмент.

Этот экспериментально установленный факт объясняется тем, что в пределах упругой деформации сжатие или растяжение тел вдоль одного направления не влияет на их упругие свойства при деформации по любым другим направлениям. Поэтому в каждой точке, которой достигают волны от разных источников, результат действия нескольких волн в любой момент времени равен сумме результатов действия каждой волны в отдельности. Эта закономерность называется принципом суперпозиции.

Интерференция волн.

Для более глубокого понимания содержания принципа суперпозиции проделаем следующий опыт.

В волновой ванне с помощью вибратора с двумя стержнями создадим два точечных источника волн с одинаковой частотой

колебаний. Наблюдения показывают, что в этом случае в волновой ванне возникает особая картина распространения волн. На водной поверхности выделяются полосы, где колебания отсутствуют (рис. 226).

Подобное явление можно обнаружить в опытах со звуковыми волнами. Установим два динамических громкоговорителя и подключим их к выходу одного звукового генератора. Перемещаясь на небольшие расстояния в классной комнате, на слух можно обнаружить, что в одних точках пространства звучание громкое, а в других - тихое. Звуковые волны от двух источников в одних точках пространства усиливают, а в других ослабляют друг друга (рис. 227).

Явление увеличения или уменьшения амплитуды результирующей волны при сложении двух или нескольких волн с одинаковыми периодами колебаний называется интерференцией волн.

Явление интерференции волн не противоречит принципу суперпозиции. В точках с нулевой амплитудой колебаний две встречающиеся волны не «гасят» друг друга, обе они без изменений распространяются далее.

Условия интерференционного минимума и максимума.

Амплитуда колебаний равна нулю в

тех точках пространства, в которые волны с одинаковыми амплитудой и частотой приходят со сдвигом по фазе колебаний на или на половину периода колебаний. При одинаковом законе колебаний двух источников волн различие на половину периода колебаний будет при условии, что разность расстояний от источников волн до этой точки равна половине длины волны:

или нечетному числу полуволн:

Разность называется разностью хода интерферирующих волн, а условие

называется условием интерференционного минимума.

Интерференционные максимумы наблюдаются в точках пространства, в которые волны приходят с одинаковой фазой колебаний. При одинаковом законе колебаний двух источников для выполнения этого условия разность хода должна равняться целому числу волн:

Когерентность.

Интерференция волн возможна только при выполнении условия когерентности. Слово «когерентность» означает согласованность. Когерентными называются колебания с одинаковой частотой и постоянной во времени разностью фаз.

Интерференция и закон сохранения энергии.

Куда исчезает энергия двух волн в местах интерференционных минимумов? Если рассматривать только одно место встречи двух волн, то на такой вопрос нельзя дать правильный ответ. Распространение волн не является совокупностью независимых процессов колебаний в отдельных точках пространства. Сущность волнового процесса заключается в передаче энергии колебаний от одной точки пространства к другой и т. д. При интерференции волн в местах интерференционных минимумов энергия результирующих колебаний действительно меньше суммы энергий двух интерферирующих волн. Зато в местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн ровно на столько, на сколько уменьшилась энергия в местах интерференционных минимумов. При интерференции волн энергия колебаний перераспределяется в пространстве, но при этом закон сохранения энергии строго выполняется.

Днфракцня волн.

Если уменьшать размеры отверстия в преграде на пути волны, то, чем меньше будут размеры отверстия, тем большие отклонения от прямолинейного направления распространения будут испытывать волны (рис. 228, а, б). Отклонение направления распространения волн от прямолинейного у границы преграды называется дифракцией волн.

Для наблюдения дифракции звуковых волн подключим громкоговорители к выходу звукового генератора и поставим на пути распространения звуковых волн экран из материала,

поглощающего звуковые волны. Передвигая за экраном микрофон, можно обнаружить, что звуковые волны регистрируются и за краем экрана. Изменяя частоту звуковых колебаний и тем самым длину звуковых вола, можно установить, что явление дифракции становится более заметным при увеличении длины волны.

Дифракция волн происходит при их встрече с преградой любой формы и любых размеров. Обычно при больших по сравнению с длиной волны размерах препятствия или отверстия в преграде дифракция волн мало заметна. Наиболее отчетливо дифракция проявляется при прохождении волн через отверстие с размерами порядка длины волны или при встрече с препятствиями таких же размеров. При достаточно больших расстояниях между источником волн, преградой и местом наблюдения волн, дифракционные явления могут иметь место и при больших размерах отверстия или преграды.

Принцип Гюйгенса - Френеля.

Качественное объяснение явления дифракции можно дать на основе принципа Гюйгенса. Однако принцип Гюйгенса не может объяснить всех особенностей распространения волн. Поставим на пути плоских волн в волновой ванне преграду с широким отверстием. Опыт показывает, что волны проходят через отверстие и распространяются по первоначальному направлению луча. В остальных направлениях волны от отверстия не распространяются. Это противоречит принципу Гюйгенса, согласно которому вторичные волны должны распространяться во все стороны от точек, которых достигла первичная волна.

Поставим на пути волн широкую преграду. Опыт показывает, что за преграду волны не распространяются, что опять противоречит принципу Гюйгенса. Для объяснения явлений, наблюдаемых при встрече волн с преградами, французский физик Огюстен Френель (1788-1827) в 1815 г. дополнил принцип Гюйгенса представлениями о когерентности вторичных волн и их интерференции. Отсутствие волн в стороне от направления луча первичной волиы за широким отверстием согласно принципу Гюйгенса - Френеля объясняется тем, что вторичные когерентные волны, испускаемые разными участками отверстия, интерферируют между собой. Волны отсутствуют в тех местах, в которых для вторичных волн от разных участков выполняются условия интерференционных минимумов.

Поляризация волн.

Явления интерференции и дифракции

наблюдаются как при распространении продольных, так и поперечных волн. Однако поперечные волны обладают одним свойством, которым не обладают продольные волны, - свойством поляризации.

Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Плоскополяризованная волна в резиновом шнуре получается при колебаниях конца шнура в одной плоскости. Если же конец шнура колеблется в различных направлениях, то волна, распространяющаяся вдоль шнура, не поляризована.

Поляризацию этой волны можно осуществить, поставив на ее пути преграду с отверстием в виде узкой щели. Щель пропускает только колебания шнура, происходящие вдоль нее. Поэтому волна после прохождения щели становится поляризованной в плоскости щели (рис. 229). Если далее на пути плоскополяризованной волны поставить вторую щель параллельно первой, то волна свободно проходит через нее. Поворот второй щели по отношению к первой на 90° останавливает процесс распространения волны в шнуре.

Устройство, выделяющее из всех возможных колебания, происходящие в одной плоскости (первая щель), называется поляризатором. Устройство, позволяющее определить плоскость поляризации волны (вторая щель), называется анализатором.

Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий.

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит от соотношения длины волны и размеров не-однородностей. Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн.

В главе рассматривается голография как метод, основанный на интерференции и дифракции.

24.1. КОГЕРЕНТНЫЕ ИСТОЧНИКИ СВЕТА. УСЛОВИЯ ДЛЯ НАИБОЛЬШЕГО УСИЛЕНИЯ И ОСЛАБЛЕНИЯ ВОЛН

Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается, когда их частоты одинаковы и направления электрических векторов совпадают. В этом случае амплитуду результирующей волны можно найти по формуле (7.20), которую для напряженности электрического поля запишем в виде:

В зависимости от типа источников света результат сложения волн может быть принципиально различным.

Сначала рассмотрим сложение волн, идущих от обычных источников света (лампа, пламя, Солнце и т.п.). Каждый такой источник представляет совокупность огромного количества излучающих атомов. От-

дельный атом излучает электромагнитную волну приблизительно в течение 10 -8 с, причем излучение есть событие случайное, поэтому и разность фаз Δ φ в формуле (24.1) принимает случайные значения. При этом среднее по излучениям всех атомов значение cos Δ φ равно нулю. Вместо (24.1) получаем усредненное равенство для тех точек пространства, где складываются две волны, идущие от двух обычных источников света:

= + . (24.2)

Так как интенсивность волны пропорциональна квадрату амплитуды, то из (24.2) имеем условие сложения интенсивностей / 1 и / 2 волн:

I = /1+ /2 . (24.3)

Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется достаточно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это наблюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в отдельности.

Если Δ φ остается неизменной, наблюдается интерференция света. Интенсивность результирующей волны принимает в разных точках пространства значения от минимального до некоторого максимального.

Интерференция света возникает от согласованных, когерентных источников, которые обеспечивают постоянную во времени разность фаз Δ φ слагаемых волн в различных точках. Волны, отвечающие этому условию, называют когерентными.

Интерференция могла бы быть осуществлена от двух синусоидальных волн одинаковой частоты, однако практически создать такие световые волны невозможно, поэтому когерентные волны получают, расщепляя световую волну, идущую от источника.

Такой способ применяется в методе Юнга. На пути сферической волны, идущей от источника S, устанавливается непрозрачная преграда с двумя щелями (рис. 24.1). Точки волновой поверхности, дошедшей до преграды, становятся центрами когерентных вторичных волн, поэтому щели можно рассматривать как когерентные источники. На экране Э наблюдается интерференция.

Другой метод заключается в получении мнимого изображения S" источника S (рис. 24.2) с помощью специального однослойного зеркала

(зеркало Ллойда). Источники S и S" являются когерентными. Они создают условия для интерференции волн. На рисунке показаны два интерферирующих луча, попадающие в точку А экрана Э.

Так как время τ излучения отдельного атома ограничено, то разность хода δ лучей 1 и 2 при интерференции не может быть слишком большой, в противном случае в точке А встретятся разные, некогерентные волны. Наибольшее значение δ для интерференции определяется через скорость света и время излучения атома:

δ = с τ = 3 ? 108 . 10-8 = 3 м. (24.4)

Расчет интерференционной картины можно сделать, используя формулу (24.1), если известна разность фаз интерферирующих волн и их амплитуды.

Практический интерес представляют частные случаи: наибольшее усиление волн - максимум интенсивности (max), наибольшее ослабление - минимум интенсивности (min).

Отметим, что условия максимумов и мини-

мумов интенсивностей удобнее выражать не через разность фаз, а через разность хода, так как пути, проходимые когерентными волнами при интерференции, обычно известны. Покажем это на примере интерференции плоских волн I, II, векторы Дкоторых перпендикулярны плоскости чертежа (рис. 24.3).

Колебания вектора И этих волн в некоторой точке В, удаленной на расстояния х 1 и х 2

соответственно от каждого источника, происходят по гармоническому закону Рис. 24.3


24.2. ИНТЕРФЕРЕНЦИЯ СВЕТА В ТОНКИХ ПЛАСТИНКАХ (ПЛЕНКАХ). ПРОСВЕТЛЕНИЕ ОПТИКИ

Образование когерентных волн и интерференции происходит также при попадании света на тонкую прозрачную пластинку или пленку. Пучок света падает на плоскопараллельную пластинку (рис. 24.4). Луч 1 из этого пучка попадает в точку а, частично отражается (луч 2), частично преломляется (луч am). Преломленный луч испытывает отражение на нижней границе пластинки в точке м. Отраженный луч, преломившись в точке в, выходит в первую среду (луч 3). Лучи 2 и 3 образованы от одного луча, поэтому они когерентны и будут интерферировать. Найдем оптическую разность хода лучей 2 и 3. Для этого из точки в проведем нормаль вс к лучам. От прямой вс до встречи лучей их оптическая разность хода не изменится, линза или глаз не внесут дополнительной разности фаз.

До расхождения в точке а эти лучи в совокупности с другими, не показанными на рис. 24.4, формировали луч 1 и поэтому, естественно, имели одинаковую фазу. Луч 3 прошел расстояние \ам\ + |МВ| в пластинке с показателем преломления п, луч 2 - расстояние \АС| в воздухе, поэтому их оптическая разность хода:

Рис. 24.4

1 Для циклических процессов не имеет значения, уменьшается или увеличивается фаза на π, поэтому равноценно было бы говорить не о потере, а о приобретении полволны, однако такая терминология не употребляется.

Из (24.22) видно, что в проходящем свете интерферируют волны с существенно различными амплитудами, поэтому максимумы и минимумы мало отличаются друг от друга и интерференция слабо заметна.

Проанализируем зависимости (24.17) и (24.18). Если на тонкую плоскопараллельную пластинку под некоторым углом падает параллельный пучок монохроматического излучения, то, согласно этим формулам, пластинка в отраженном свете выглядит яркой или темной.

При освещении пластинки белым светом условия максимума и минимума выполняются для отдельных длин волн, пластинка станет окрашенной, причем цвета в отраженном и проходящем свете будут дополнять друг друга до белого.

В реальных условиях падающий пучок не является строго параллельным и не имеет одного определенного угла падения i. Такой небольшой разброс i при значительной толщине пластины l может приводить к существенному различию левых частей в формулах (24.17) и (24.18) и условия максимума и минимума не будут выдержаны для всех лучей пучка света. Это одно из соображений, поясняющих, почему интерференция может наблюдаться лишь в тонких пластинах и пленках.

При падении монохроматического света на пластинку переменной толщины каждому значению l соответствует свое условие интерференции, поэтому пластинка пересечена светлыми и темными линиями (полосами) - линиями равной толщины. Так, в клине это система параллельных линий (рис. 24.6), в воздушном промежутке между линзой и пластинкой - кольца (кольца Ньютона).

При освещении пластинки переменной толщины белым светом получаются разноцветные пятна и линии: окрашенные мыльные пленки,

Рис. 24.6

пленки нефти и масла на поверхности воды, переливчатые цвета крыльев некоторых насекомых и птиц. В этих случаях не обязательна полная прозрачность пленок.

Особый практический интерес имеет интерференция в тонких пленках в связи с созданием устройств, уменьшающих долю световой энергии, отраженной оптическими системами, и увеличива-

ющих, следовательно, энергию, поступающую к регистрирующим системам - фотопластинке, глазу и т.п. С этой целью поверхности оптических систем покрывают тонким слоем оксидов металлов так, чтобы для некоторой средней для данной области спектра длины волны был минимум интерференции в отраженном свете. В результате возрастет доля прошедшего света. Покрытие оптических поверхностей специальными пленками называют просветлением оптики, а сами оптические изделия с такими покрытиями - просветленной оптикой.

Если на стеклянную поверхность нанести ряд специально подобранных слоев, то можно создать отражательный светофильтр, который вследствие интерференции будет пропускать или отражать определенный интервал длин волн.

24.3. ИНТЕРФЕРОМЕТРЫ И ИХ ПРИМЕНЕНИЕ. ПОНЯТИЕ ОБ ИНТЕРФЕРЕНЦИОННОМ МИКРОСКОПЕ

Интерференцию света используют в специальных приборах - интерферометрах - для измерения с высокой степенью точности длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

На рис. 24.7 изображена принципиальная схема интерферометра Майкельсона, который относится к группе двухлучевых, так как световая волна в нем раздваивается 1 и обе ее части, пройдя разный путь, интерферируют.

Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тонким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова. Луч 2 доходит до зеркала I, отражается, преломляется в пластине А и частично выходит из пластины - луч 2". Луч 3 из точки О идет к зеркалу II, отражается, возвращается к пластине А, где частично отражается, - луч 3" . Лучи 2" и 3" , попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована.

Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую

1 Строго говоря, вследствие многократных отражений может образоваться более чем два луча, однако их интенсивности незначительны.

1 Вследствие разных углов падения лучей из S на пластину А или нестрогой перпендикулярности зеркал I и11 интерференционная картина практически всегда представлена полосами (полосы равного наклона или равной толщины соответственно). Этот вопрос подробно не рассматривается.

Как видно, интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой.

Интерферешщонньгй рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.

С помощью интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, послуживших созданию специальной теории относительности.

Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа, используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принципиальная схема интерференционного микроскопа показана на рис. 24.8. Луч света, как и в интерферометре, в точке А раздваивается, один луч проходит через прозрачный микрообъект М, а другой - вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.

24.4. ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ

Расчет и объяснение дифракции света можно приближенно сделать, используя принцип Гюйгенса-Френеля.

Согласно Гюйгенсу, каждая точка волновой поверхности, которой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 24.9; S 1 и S 2 - волновые поверхности соответственно в моменты t 1 и t 2 ; t 2 > t 1).

Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции.

В таком обобщенном виде эти идеи получили название принципа Гюйгенса-Френеля.

Для того чтобы определить результат дифракции в некоторой точке пространства, следует рассчитать, согласно принципу Гюйгенса-

Рис. 24.9

Френеля, интерференцию вторичных волн, попавших в эту точку от волновой поверхности. Для волновой поверхности произвольной формы такой расчет достаточно сложен, но в отдельных случаях (сферическая или плоская волновая поверхность, симметричное расположение точки относительно волновой поверхности и непрозрачной преграды) вычисления сравнительно просты. Волновую поверхность при этом разбивают на отдельные участки (зоны Френеля), расположенные определенным образом, что упрощает математические операции.

24.5. ДИФРАКЦИЯ НА ЩЕЛИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

На узкую длинную щель, расположенную в плоской непрозрачной преграде MN, нормально падает плоскопараллельный пучок монохроматического света (рис. 24.10; \AB | = а - ширина щели; L - собирающая линза, в фокальной плоскости которой расположен экран Э для наблюдения дифракционной картины).

Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптической оси линзы. Дифракция света на щели существенно изменяет явление.

Будем считать, что все лучи пучка света исходят от одного удаленного источника 1 и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозможным направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. 24.10 показаны только вторичные волны, распространяющиеся под углом α к направлению падающего пучка и нормали решетки. Линза соберет эти волны в точке О" экрана, где и будет наблюдаться их интерференция. (Положение точки О" получают как пересечение с фокальной плоскостью побочной оси СО "линзы, проведенной под углом α.)

Чтобы узнать результат интерференции вторичных волн, проделаем следующие построения. Проведем перпендикуляр AD к направлению

1 Практически точечный источник можно расположить в фокусе линзы, не показанной на рис. 24.10, Так что от линзы будет распространяться параллельный пучок когерентных волн.

Рис. 24.10

пучка вторичных волн. Пути всех вторичных волн от AD до О" будут тау-тохронными, линза не внесет добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к AD, будет сохранена и в точке О".

Разобьем BD на отрезки, равные λ /2. В случае, показанном на рис. 24.10, получено три таких отрезка: \ВВ 2 \ = \В 2 В 1 \ = \B 1 D \ = λ /2. Проведя из точек В 2 и В 1 прямые, параллельные AD, разделим АВ на равные зоны Френеля: \ АА 1 \ = | АА 2 | = |А 2 В \. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет λ /2.

Например, вторичная волна, идущая от точки А 2 в выбранном направлении, проходит до точки О"расстояние на λ /2 больше, чем волна, идущая от точки А 1 , и т.д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как различаются по фазе на π.

Число зон, укладывающихся в щели, зависит от длины волны λ и угла α. Если щель АВ разбить при построении на нечетное число зон Френеля, a BD - на нечетное число отрезков, равных λ /2, то в точке О" наблюдается максимум интенсивности света:

Направление, соответствующее углу α = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.

Если щель АВ разбить на четное число зон Френеля, то наблюдается минимум интенсивности света:

Рис. 24.11

Таким образом, на экране э получится система светлых (максимум) и темных (минимум) полос, центрам которых соответствуют условия (24.26) или (24.27), симметрично расположенных влево и вправо от центральной (α = 0), наиболее яркой, полосы. Интенсивность i остальных максимумов убывает по мере удаления от центрального максимума (рис. 24.11).

Если щель освещать белым светом, то на экране э [см. (24.26), (24.27)] образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света, так как при α = 0 усиливаются все длины волн света.

Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей приложение светового потока, но перераспределителем этого потока в пространстве.

Чтобы понять влияние соотношения между шириной щели и длиной волны на возможность наблюдения дифракционной картины, рассмотрим некоторые частные случаи:

24.6. ДИФРАКЦИОННАЯ РЕШЕТКА. ДИФРАКЦИОННЫЙ СПЕКТР

Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места - щели - будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а) и ее условное обозначение (б) показаны на

рис. 24.12.

Расстояние между центрами соседних щелей называют постоянной или периодом дифракционной решетки:

где а - ширина щели; b - ширина промежутка между щелями.

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всем возможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 24.13). Выберем некоторое направление вторичных волн под углом α относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода δ = \А"В"\. Такая же разность хода будет для вторичных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие

где k = 0, 1, 2 - порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, α = 0). Равенство (24.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом α от соответственных точек соседних щелей, равна λ/N, т.е.:

где N - число щелей дифракционной решетки. Этой разности хода δ [см. (24.9)] отвечает разность фаз Δφ = 2π /N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2π/Ν, от третьей - 4π/Ν, от четвертой - 6π/Ν и т.д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического (или магнитного) поля, угол между любыми соседними из которых есть 2π/Ν, равна нулю. Это означает, что условие (24.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей δ = 2(λ/Ν) или разности фаз Δφ = 2(2π/Ν) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т.д.

В качестве иллюстрации на рис. 24.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: Е 1 , Е 2 и т.д. - векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т.д. щеле й.

Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а), 120° (б), 180° (в), 240° (г) и 300° (д).

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется Ν - 1 добавочных минимумов, удовлетворяющих условию:

Рис. 24.15

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (24.29)]. В этом случае k указывает порядок спектра.

24.7. ОСНОВЫ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА

Основная формула (24.29) дифракционной решетки может быть использована не только для определения длины волны, но и для решения обратной задачи - нахождения постоянной дифракционной решетки по известной длине волны. Такая скромная применительно к обычной дифракционной решетке задача подводит к практически важному вопросу - измерению параметров кристаллической решетки посредством дифракции рентгеновских лучей, что является содержанием рентгено-структурного анализа.

Пусть совмещены две дифракционные решетки, штрихи которых перпендикулярны. Для решеток выполняются условия главных максимумов:

Углы α 1 и α 2 отсчитываются во взаимно перпендикулярных направлениях. В этом случае на экране появится система пятен, каждому из которых соответствует пара значений k 1 и k 2 или α 1 и α 2 . Таким образом, и здесь можно найти с 1 и с 2 по положению дифракционных пятен.

Естественной объемной периодической структурой являются кристаллы, крупные молекулы и т.п. Вторичные волны в кристалле возникают в результате взаимодействия первичных лучей с электронами атомов.

Для отчетливого наблюдения дифракционной картины должно выполняться определенное соотношение между длиной волны и параметром периодической структуры (см. 24.5). Оптимальным условиям соответствует примерно одинаковый порядок этих величин. Учитывая, что расстояние между рассеивающими центрами (атомами) в кристалле (~10 -10 м) приблизительно равно длине волны рентгеновского излуче-

На рис. 24.19 пунктиром показаны две соседние кристаллографические плоскости. Взаимодействие рентгеновского излучения с атомами и возникновение вторич-

ных волн можно рассматривать упрощенным методом как отражение от плоскостей.

Пусть на кристалл под углом скольжения θ падают рентгеновские лучи 1 и 2; 1" и 2" - отраженные (вторичные) лучи, СЕ и CF - перпендикуляры к падающим и отраженным лучам соответственно. Разность хода отраженных лучей 1" и 2":

где l - межплоскостное расстояние.

Максимумы интерференции при отражении возникают в случае, когда разность хода равна целому числу длин волн:

Это формула Вульфа-Брэггов.

При падении монохроматического рентгеновского излучения на кристалл под разными углами наибольшее отражение (максимум) будет для углов, отвечающих условию (24.42). При наблюдении под определенным углом скольжения пучка рентгеновского излучения со сплошным спектром максимум дифракций будет выполняться для длин волн, удовлетворяющих условию Вульфа-Брэггов.

П. Дебаем и П. Шеррером был предложен метод рентгенострук-турного анализа, основанный на дифракции монохроматических рентгеновских лучей в поликристаллических телах (обычно спрессованные порошки). Среди множества кристаллитов всегда найдутся такие, для которых одинаковы /, θ и к, причем эти величины соответствуют формуле Вульфа-Брэггов. Ораженный луч 2 (максимум) составит угол 2 θ с па-

дающим рентгеновским лучом L (рис. 24.20, а). Так как условие (24.42) одинаково для многих кристаллов, по-разному ориентированных, то дифрагированные рентгеновские лучи образуют в пространстве конус, вершина которого лежит в исследуемом объекте, а угол раствора равен 4θ (рис. 24.20, б). Другой совокупности величин l, θ и к, удовлетворяющих условию (24.42), будет соответствовать дру-


гой конус. На фотопленке рентгеновские лучи образуют рентгенограмму (дебаеграмму) в виде окружностей (рис. 24.21) или дуг.

Дифракцию рентгеновских лучей наблюдают также при рассеянии их аморфными твердыми телами, жидкостями и газами. В этом случае на рентгенограмме получаются широкие и размытые кольца.

В настоящее время широко применяют рентгеноструктурный анализ биологических молекул и систем: на рис. 24.22 показаны рентгенограммы белков. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК и были удостоены Нобелевской премии (1962). Использование дифракции рентгеновских лучей от кристаллов для исследования их спектрального состава относится к области рентгеновской спектроскопии.

24.8. ПОНЯТИЕ О ГОЛОГРАФИИ И ЕЕ ВОЗМОЖНОМ ПРИМЕНЕНИИ В МЕДИЦИНЕ

Голография 1 - метод записи и восстановления изображения, основанный на интерференции и дифракции волн.

Идея голографии была впервые высказана Д. Габором в 1948 г., однако ее практическое использование оказалось возможно после появления лазеров.

1 Голография (грен.) - метод полной записи.

Изложение голографии уместно начать сравнением с фотографией. При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и, таким образом, пропадает значительная часть информации о предмете.

Голография позволяет фиксировать и воспроизводить более полные сведения об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используют как вспомогательные устройства, и сигнальную, которая появляется при рассеянии (отражении) части опорной волны предметом и содержит соответствующую информацию о нем.

Интерференционную картину, образованную сложением сигнальной и опорной волн и зафиксированную на светочувствительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.

Покажем на некоторых примерах, как получается голограмма и восстанавливается изображение.

Голограмма плоской волны

В этом случае на голограмме фиксируется плоская сигнальная волна /, попадающая под углом α 1 на фотопластинку ф (рис. 24.23).

Опорная волна II падает нормально, поэтому во всех точках фотопластинки одновременно ее фаза одинакова. Фазы сигнальной волны вследствие ее наклонного падения различны в разных точках светочувствительного слоя. Из этого следует, что разность фаз между лучами опорной и сигнальной волн зависит от места встречи этих лучей на фотопластинке и, согласно условиям максимумов и минимумов интерференции, полученная голограмма будет состоять из темных и светлых полос.

Пусть ав (рис. 24.23, б) соответствует расстоянию между центрами ближайших темных или светлых интерференционных полос. Это означает, что фазы точек а и в в сигнальной волне отличаются на 2π. Построив нормаль ас к ее лучам (фронт волны), нетрудно видеть, что фазы точек а и с одинаковы. Различие фаз точек в и с на 2π означает, что \ВС\ = λ. Из прямоугольного аавс имеем

Итак, в этом примере голограмма подобна дифракционной решетке, так как на светочувствительной поверхности зарегистрированы области усиленных (максимум) и ослабленных (минимум) колебаний, расстояние ав между которыми определяется по формуле (24.43).

Так как сигнальная волна образуется при отражении части опорной от предмета, то понятно, что в данном случае предметом является плоское зеркало или призма, т.е. такие устройства, которые преобразуют плоскую опорную волну в плоскую сигнальную (технические подробности на рис. 24.23, a не показаны).

Направив на голограмму опорную волну i (рис. 24.24), осуществим дифракцию (см. 24.6). Согласно (24.29), первые главные максимумы (k = 1) соответствуют направлениям

Из (24.46) видно, что направление волны i" (рис. 24.24), дифрагированной под углом a 1 , соответствует сигнальной: так восстанавливают волну, отраженную (рассеянную) предметом. Волна i"" и волны остальных главных максимумов (на рисунке не показаны) также воспроизводят информацию, зафиксированную в голограмме.

Голограмма точки

Одна часть опорной волны II попадает на точечный объект А (рис. 24.25, а) и рассеивается от нее в виде сферической сигнальной волны I, другая часть плоским зеркалом З направляется на фотопластинку Ф, где эти волны интерферируют. Источником излучения является лазер Л. На рис. 24.25, б схематически изображена полученная голограмма.

Хотя в данном примере сигнальная волна является сферической, можно с некоторым приближением применить формулу (24.45) и заметить, что по мере увеличения угла α 1 (см. рис. 24.23, а) уменьшается расстояние АВ между соседними полосами. Нижние дуги на голограмме (рис. 24.25, б) расположены более тесно.

Если вырезать из голограммы узкую полоску, показанную пунктирными линиями на рис. 24.25, б, то она будет подобна узкой дифракционной решетке, постоянная которой уменьшается в направлении оси X. На такой решетке отклонение вторичных волн, соответствующих первому главному максимуму, возрастает по мере увеличения координаты х щели [см. (24.41)]: с становится меньше, | sina| - больше.

Таким образом, при восстановлении изображения плоской опорной волной дифрагированные волны уже не будут плоскими. На рис. 24.26 показаны волна I", формирующая мнимое изображение А" точки А, и волна создающая действительное изображение А".

Так как рассеянные предметом волны попадают совместно с опорной волной во все точки голограммы, то все ее участки содержат информацию о предмете, и для восстановления изображения не обязательно использовать полностью всю голограмму. Следует, однако, заметить,

что восстановленное изображение тем хуже, чем меньшую часть голограммы для этого применяют. Из рис. 24.26 видно, что мнимое и действительное изображения образуются и в том случае, если восстановление осуществляют, например, нижней половиной голограммы (штриховые линии), однако изображение при этом формируется меньшим количеством лучей.

Любой предмет является совокупностью точек, поэтому рассуждения, приведенные для одной точки, могут быть обобщены и на голографию любого предмета. Голографические изображения объемны, и их зрительное восприятие ничем не отличается от восприятия соответствующих предметов 1: ясное видение разных точек изображения осуществляется посредством адаптации глаза (см. 26.4); при изменении точки зрения изменяется перспектива, одни детали изображения могут заслонять другие.

При восстановлении изображения можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инфракрасными и рентгеновскими), можно восстановить видимым светом. Так как условия отражения и поглощения электромагнитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать ее как метод внутривидения, или интроскопии 2 .

Особо интересные и важные перспективы открываются в связи с ультразвуковой голографией. Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым светом. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью, определения пола внутриутробного ребенка и т.д. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожи-

1 Некоторое отличие обусловлено одноцветностью изображения, которое неизбежно при записи и восстановлении монохроматической волной.

2 Intro (лат.) - внутри и skopeo (лат.) - смотрю. Визуальное наблюдение объектов, явлений и процессов в оптически непрозрачных телах и средах, а также в условиях плохой видимости.

дать, что в будущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.

Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Его устройство основано на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.

В развитие голографии внес вклад советский физик, лауреат Ленинской премии Ю.Н. Денисюк, разработавший метод цветной голографии.

Разглядывая сияющее голографическое изображение, большинство из нас вряд ли вспоминает физические термины «дифракция» и «интерференция световых волн» .


Но именно благодаря изучению этих понятий появилась возможность создавать голограммы.

Что такое дифракция света?

Слово «дифракция» образовано от латинского «diffractus» , что означает в дословном переводе «огибание волнами препятствия» . Как известно, имеет волновую природу, и его лучи подчиняются волновым законам. Дифракцией в физике называют оптические явления, возникающие, когда световые волны распространяются в оптически неоднородной среде с непрозрачными включениями.

Волновая природа света определяет его поведение при огибании препятствий. Если препятствие во много раз больше длины световой волны, свет не огибает его, образуя зону тени. Но в случаях, когда размеры препятствий соразмерны с длиной волны, возникает явление дифракции. В принципе, любое отклонение от геометрических оптических законов можно отнести к дифракции.

Интерференция волн

Если мы установим перед источником света непрозрачный экран и проделаем в нём точечное отверстие, то проникающие через эту точку лучи света на следующем экране, расположенном параллельно первому, отобразятся в виде концентрических колец с чередованием светлых и тёмных окружностей. Это явление в физике называют дифракцией Френеля, по имени учёного, который впервые обнаружил его и описал.

Изменив форму отверстия и сделав его щелеобразным, мы получим на втором экране другую картину. Световые лучи расположатся в виде ряда светлых и тёмных полосок, как на магазинном штрих-коде. Дифракцию света на щелеобразном отверстии впервые описал немецкий физик Фраунгофер, именем которого она называется до сих пор.


Объяснить разложение световой волны на светлые и тёмные участки учёные смогли при помощи понятия интерференции. Несколько источников волновых колебаний, если частоты их колебаний когерентны (одинаковы либо кратны друг другу), могут усиливать излучение друг друга, но могут и ослаблять, в зависимости от совпадения фаз колебаний. При огибании препятствий и возникновении вторичных волн вступает в действие их интерференция. На участках, где фазы волн совпадают, наблюдается повышенная освещённость (яркие светлые полоски либо окружности), а там, где не совпадают – освещённость снижена (тёмные участки).

Дифракционная решётка

Если взять прозрачную пластинку и нанести на неё ряд параллельных непрозрачных чёрточек на одинаковом расстоянии друг от друга, то мы получим дифракционную решётку. При пропускании через неё плоского светового фронта образуется дифракция на непрозрачных штрихах. Вторичные волны, взаимно ослабляясь и усиливаясь, образуют дифракционные минимумы и максимумы, что легко обнаружить на экране, поставленном за решёткой.

При этом происходит не только отклонение световых лучей, но и разложение белого света на цветовые спектральные составляющие. В природе нужная для маскировки окраска крыльев бабочек, оперения птиц, змеиной чешуи часто образуется благодаря использованию дифракционных и интерференционных оптических явлений, а не из-за пигментов.

Голограммы

Принцип голограммы был изобретён в 1947 году физиком Д. Габором, который впоследствии получил за его изобретение Нобелевскую премию. Трёхмерное, т.е. объёмное изображение объекта можно снять и записать, а затем воспроизвести, если использовать лазерные лучи. Одна из световых волн называется опорной и испускается источником, а вторая – объектной и отражается от записываемого объекта.

На фотопластинке либо другом материале, предназначенном для записи, фиксируется сочетание светлых и тёмных полос и пятен, которые отображают интерференцию электромагнитных волн в этой зоне пространства. Если на фотопластинку направляют свет с длиной волны, соответствующей характеристикам опорной волны, то происходит его преобразование в световую волну, по характеристикам близкую к объектной. Таким образом, в световом потоке получается объёмное изображение зафиксированного объекта.


Сегодня неподвижные голограммы можно записывать и воспроизводить даже в домашних условиях. Для этого нужен лазерный луч, фотопластина и каркас, который надёжно удерживает в неподвижности эти приспособления, а также объект записи. Для домашней голограммы отлично подойдёт луч лазерной указки со снятой фокусирующей линзой.