Презентация по геометрии "симметрия вокруг нас"

Симметрии могут быть точными или приближёнными.

Симметрия в геометрии

Геометрическая симметрия - это наиболее известный тип симметрии для многих людей. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию). Виды симметрий, возможных для геометрического объекта, зависят от множества доступных геометрических преобразований и того, какие свойства объекта должны оставаться неизменными после преобразования.

Виды геометрических симметрий:

Зеркальная симметрия

В физике инвариантность относительно группы вращений называется изотропностью пространства (все направления в пространстве равноправны) и выражается в инвариантности физических законов, в частности, уравнений движения, относительно вращений. Теорема Нётер связывает эту инвариантность с наличием сохраняющейся величины (интеграла движения) - углового момента .

Симметрия относительно точки

Скользящая симметрия

Симметрии в физике

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени Однородность
времени
…энергии
⊠ , , и -симметрии Изотропность
времени
…чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца (бусты) Относительность
Лоренц-ковариантность
…движения
центра масс
~ Калибровочное преобразование Калибровочная инвариантность …заряда

В теоретической физике поведение физической системы описывается некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин (интегралов движения ). Так, уже в классической механике формулируется теорема Нётер , которая каждому типу непрерывной симметрии сопоставляет сохраняющуюся величину. Из неё, например, следует, что инвариантность уравнений движения тела с течением времени приводит к закону сохранения энергии ; инвариантность относительно сдвигов в пространстве - к закону сохранения импульса ; инвариантность относительно вращений - к закону сохранения момента импульса .

Суперсимметрия

Перенос в плоском четырёхмерном пространстве-времени не меняет физических законов. В теории поля трансляционная симметрии, согласно теореме Нётер , соответствует сохранению тензора энергии-импульса . В частности, чисто временные трансляции соответствуют закону сохранения энергии , а чисто пространственные сдвиги - закону сохранения импульса .

Симметрии в биологии

Симметрия в биологии - это закономерное расположение подобных (одинаковых, равных по размеру) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии . Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии. Если тело животного можно мысленно разделить на две половины, правую и левую, то такую форму симметрии называют билатеральной . Этот тип симметрии свойственен подавляющему большинству видов, а также человеку. Если тело животного можно мысленно разделить не одной, а несколькими плоскостями симметрии на равные части, то такое животное называют радиально-симметричным . Этот тип симметрии встречается значительно реже.

Асимметрия - отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии - вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.

У биологических объектов встречаются следующие типы симметрии:

  • сферическая симметрия вращений в трёхмерном пространстве на произвольные углы.
  • аксиальная симметрия (радиальная симметрия , симметрия вращения неопределённого порядка) - симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.
    • симметрия вращения n-го порядка - симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси.
  • двусторонняя (билатеральная) симметрия - симметричность относительно плоскости симметрии (симметрия зеркального отражения).
  • трансляционная симметрия - симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние (её частный случай у животных - метамерия (биология)).
  • триаксиальная асимметрия - отсутствие симметрии по всем трём пространственным осям.

Радиальная симметрия

Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

Радиальная симметрия характерна для многих стрекающих , а также для большинства иглокожих . Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют животные из группы Bilateria ).

Кристаллографическая точечная группа симметрии - это точечная группа симметрии , которая описывает макросимметрию кристалла . Поскольку в кристаллах допустимы оси (поворотные и несобственного вращения) только 1, 2, 3, 4 и 6 порядков, из всего бесконечного числа точечных групп симметрии только 32 относятся к кристаллографическим.

Анизотропия (от др.-греч. ἄνισος - неравный и τρόπος - направление) - различие свойств среды (например, физических : упругости , электропроводности , теплопроводности , показателя преломления , скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность

Сбалансированная композиция кажется правильной. Она смотрится устойчиво и эстетически привлекательно. Хотя какие-то из ее элементов могут особенно выделяться, являясь фокальными точками — ни одна часть не притягивает взгляд настолько, чтобы подавлять остальные. Все элементы сочетаются друг с другом, плавно соединяясь между собой и образуя единое целое.

Несбалансированная композиция вызывает напряжение. Когда дизайн дисгармоничен, отдельные его элементы доминируют над целым, и композиция становится меньше, чем сумма ее частей. Иногда подобная дисгармония может иметь смысл, но чаще всего баланс, упорядоченность и ритм — это лучшее решение.

Несложно понять, что такое баланс с точки зрения физики — мы ощущаем его постоянно: если что-то не сбалансировано, оно неустойчиво. Наверняка в детстве вы качались на качелях-доске — вы на одном конце, ваш друг — на другом. Если вы весили примерно одинаково, вам было легко на них балансировать.

Нижеследующая картинка иллюстрирует баланс: два человека одинакового веса находятся на равном расстоянии от точки опоры, на которой балансируют качели.

Качели в симметричном равновесии

Человек на правом конце доски раскачивает ее по часовой стрелке, а человек на левом — против. Они прикладывают одинаковую силу в противоположных направлениях, так что сумма равна нулю.

Но если бы один человек был намного тяжелее, равновесие бы исчезло.

Отсутствие равновесия

Эта картинка кажется неправильной, потому что мы знаем, что фигура слева слишком мала, чтобы уравновесить фигуру справа, и правый конец доски должен касаться земли.

Но если передвинуть более крупную фигуру в центр доски, картинка приобретет более правдоподобный вид:

Качели в асимметричном равновесии

Вес более крупной фигуры нивелируется тем, что она расположена ближе к точке опоры, на которой балансируют качели. Если вы когда-нибудь качались на таких качелях или, по крайней мере, видели, как это делают другие, то понимаете, что происходит.

Композиционное равновесие в дизайне основано на тех же принципах. Физическая масса заменяется визуальной, и направление, в котором на нее действует сила притяжения, заменяется визуальным направлением:

1. Визуальная масса — это воспринимаемая масса визуального элемента, мера того, насколько данный элемент страницы привлекает внимание.

2. Визуальное направление — это воспринимаемое направление визуальной силы, в котором, как нам кажется, двигался бы объект, если бы он мог двигаться под влиянием физических сил, действующих на него.

Для измерения этих сил нет инструментов и для расчета зрительного баланса нет формул: чтобы определить, сбалансирована ли композиция, вы ориентируетесь только на свои глаза.

Почему визуальное равновесие важно?

Визуальное равновесие так же значимо, как и физическое: несбалансированная композиция вызывает у зрителя дискомфорт. Посмотрите на вторую иллюстрацию с качелями: она кажется неправильной, потому что мы знаем, что качели должны касаться земли.

С точки зрения маркетинга, визуальная масса — это мера визуального интереса, который вызывает какая-либо область или элемент страницы. Когда лендинг визуально сбалансирован, каждая его часть вызывает некоторый интерес, а сбалансированный дизайн удерживает внимание зрителя.

При отсутствии визуального равновесия посетитель может не увидеть некоторые элементы дизайна — скорее всего, он не станет рассматривать области, уступающие другим по визуальному интересу, так что информация, связанная с ними, останется незамеченной.

Если вы хотите, чтобы пользователи узнали все, что вы намерены им сообщить — подумайте о разработке сбалансированного дизайна.

Четыре типа равновесия

Есть несколько способов добиться композиционного равновесия. Картинки из раздела выше иллюстрируют два из них: первая — пример симметричного баланса, а вторая — асимметричного. Два других типа — радиальный и мозаичный.

Симметричное равновесие достигается, когда объекты, равные по визуальной массе, размещаются на равном расстоянии от точки опоры или оси в центре. Симметричное равновесие вызывает ощущение формальности (поэтому иногда оно называется формальным равновесием) и элегантности. Приглашение на свадьбу — пример композиции, которую вы, скорее всего, захотите сделать симметричной.

Недостаток симметричного равновесия в том, что оно статично и иногда кажется скучным: если половина композиции — это зеркальное отражение другой половины, то как минимум одна половина будет достаточно предсказуема.

2. Асимметричное равновесие

Асимметричное равновесие достигается, когда объекты по разные стороны от центра имеют одинаковую визуальную массу. При этом на одной половине может находиться доминирующий элемент, уравновешенный несколькими менее важными фокальными точками на другой половине. Так, визуально тяжелый элемент (красный круг) на одной стороне уравновешен рядом более легких элементов на другой (синие полосы).

Асимметричное равновесие более динамично и интересно. Оно вызывает ощущение современности, движения, жизни и энергии. Асимметричного равновесия сложнее достичь, потому что отношения между элементами более сложны, но, с другой стороны, оно оставляет больше простора для творчества.

Радиальное равновесие достигается, когда элементы расходятся лучами из общего центра. Лучи солнца или круги на воде после того, как в нее упал камень — это примеры радиального равновесия. Удерживать фокальную точку (точка опоры) легко, поскольку она всегда в центре.

Лучи расходятся из центра и ведут к нему же, делая его самой заметной частью композиции.

Мозаичное равновесие (или кристаллографический баланс) — это сбалансированный хаос, как на картинах Джексона Поллока. У такой композиции нет выраженных фокальных точек, и все элементы одинаково важны. Отсутствие иерархии, на первый взгляд, создает визуальный шум, но, тем не менее, каким-то образом все элементы сочетаются и образуют единое целое.

Симметрия и асимметрия

И симметрия, и асимметрия может применяться в композиции вне зависимости от того, каков тип ее равновесия: вы можете использовать объекты симметричной формы для создания асимметричной композиции, и наоборот.

Симметрия, как правило, считается красивой и гармоничной. Впрочем, она также может показаться статичной и скучной. Асимметрия обычно представляется более интересной и динамичной, хотя и не всегда красивой.

Симметрия

Зеркальная симметрия (или двусторонняя симметрия) возникает, когда две половины композиции, расположенные по разные стороны от центральной оси, являются зеркальными отражениями друг друга. Скорее всего, услышав слово «симметрия», вы представляете себе именно это.

Направление и ориентация оси могут быть какими угодно, хотя зачастую она или вертикальная, или горизонтальная. Многие естественные формы, растущие или движущиеся параллельно поверхности земли, отличаются зеркальной симметрией. Ее примеры — крылья бабочки и человеческие лица.

Если две половины композиции отражают друг друга абсолютно точно, такая симметрия называется чистой. В большинстве случаев отражения не полностью идентичны, и половины немного отличаются друг от друга. Это неполная симметрия — в жизни она встречается гораздо чаще, чем чистая симметрия.

Круговая симметрия (или радиальная симметрия) возникает, когда объекты располагаются вокруг общего центра. Их количество и угол, под которым они расположены относительно центра, могут быть любыми — симметрия сохраняется, пока присутствует общий центр. Естественные формы, растущие или движущиеся перпендикулярно поверхности земли, отличаются круговой симметрией — например, лепестки подсолнуха. Чередование без отражения может быть использовано, чтобы продемонстрировать мотивацию, скорость или динамичное действие: представьте крутящиеся колеса движущегося автомобиля.

Трансляционная симметрия (или кристаллографическая симметрия) возникает, когда элементы повторяются через определенные промежутки. Пример такой симметрии — повторяющиеся планки забора. Трансляционная симметрия может возникнуть в любом направлении и на любом расстоянии, если направление совпадает. Естественные формы обретают такую симметрию через репродукцию. При помощи трансляционной симметрии вы можете создать ритм, движение, скорость или динамичное действие.

Бабочка — пример зеркальной симметрии, планки забора — трансляционной, подсолнух — круговой.

Симметричные формы чаще всего воспринимаются как фигуры на фоне. Визуальная масса симметричной фигуры будет больше, чем масса асимметричной фигуры подобного размера и формы. Симметрия создает баланс сама по себе, но она может оказаться слишком стабильной и слишком спокойной, неинтересной.

У асимметричных форм нет такой сбалансированности, как у симметричных, но вы можете и асимметрично уравновесить всю композицию. Асимметрия часто встречается в естественных формах: вы правша или левша, ветки деревьев растут в разных направлениях, облака принимают случайные формы.

Асимметрия приводит к более сложным отношениям между элементами пространства и поэтому считается более интересной, чем симметрия, а значит — ее можно использовать, чтобы привлечь внимание.

Пространство вокруг асимметричных форм более активно: узоры часто непредсказуемы, и в целом у вас больше свободы самовыражения. Обратная сторона асимметрии в том, что ее сложнее сделать сбалансированной.

Вы можете совмещать симметрию и асимметрию и добиваться хороших результатов — создавайте симметричное равновесие асимметричных форм и наоборот, разбивайте симметричную форму случайной меткой, чтобы сделать ее интереснее. Сталкивайте симметрию и асимметрию в композиции, чтобы ее элементы привлекали больше внимания.

Принципы гештальт-психологии

Принципы дизайна не возникают из ничего: они следуют из психологии нашего восприятия визуальной среды. Многие принципы дизайна вырастают из принципов гештальт-психологии, а также основываются друг на друге.

Так, один из принципов гештальт-психологии касается именно симметрии и порядка и может применяться к композиционному равновесию. Впрочем, это едва ли не единственный принцип, применимый к нему.

Другие принципы гештальт-психологии, такие как фокальные точки и простота — складываются в визуальную массу, а фактор хорошего продолжения, фактор общей судьбы и параллелизм, задают визуальное направление. Симметричные формы чаще всего воспринимаются как фигуры на фоне.

Примеры различных подходов к веб-дизайну

Настало время реальных примеров. Лендинги, представленные ниже, сгруппированы по четырем типам равновесия. Возможно, вы воспримите дизайн этих страниц по-другому, и это хорошо: критическое мышление важнее, чем безоговорочное принятие.

Примеры симметричного равновесия

Дизайн сайта Helen & Hard симметричен. Страница «О нас» на скриншоте снизу и все остальные страницы этого сайта сбалансированы похожим образом:

Скриншот страницы «О нас» сайта Helen & Hard

Все элементы, находящиеся по разные стороны вертикальной оси, расположенной в центре страницы, зеркально отражают друг друга. Логотип, навигационная панель, круглые фотографии, заголовок, три колонки текста — центрированы.

Впрочем, симметрия не идеальна: например, колонки содержат разное количество текста. Кстати, обратите внимание на верх страницы. И логотип, и навигационная панель расположены по центру, но визуально они не кажутся центрированными. Возможно, логотип стоило центрировать по амперсанду или, по крайней мере, по области рядом с ним.

В трех текстовых ссылках меню, расположенных в правой части навигационной панели, больше букв, чем в ссылках левой части — кажется, что центр должен располагаться между About и People. Может быть, если расположить эти элементы в действительности не по центру, но так, чтобы визуально они казались центрированными, композиция в целом выглядела бы более сбалансированной.

Домашняя страница Tilde — еще один пример дизайна с симметричным равновесием. Как и на Helen & Hard, все располагается вокруг вертикальной оси, проходящей по центру страницы: навигация, текст, люди на фотографиях.

Скриншот домашней страницы Tilde

Как и в случае с Helen & Hard, симметрия не идеальна: во-первых, центрированные строчки текста не могут быть отражением фотографии снизу, а во-вторых, пара элементов выбивается из общего ряда — стрелка «Meet the Team» указывает вправо, и текст внизу страницы заканчивается еще одной стрелкой вправо. Обе стрелки являются призывами к действию и обе нарушают симметрию, привлекая к себе дополнительное внимание. Кроме того, по цвету обе стрелки контрастируют с фоном, что тоже притягивает взгляд.

Примеры асимметричного равновесия

Домашняя страница Carrie Voldengen демонстрирует асимметричное равновесие вокруг доминирующей симметричной формы. Глядя на композицию в целом, можно увидеть несколько отдельных друг от друга форм:

Скриншот веб-сайта Carrie Voldengen

Большую часть страницы занимает прямоугольник, состоящий из решетки меньших прямоугольных изображений. Сама по себе решетка симметрична и по вертикальной, и по горизонтальной оси и выглядит очень прочной и стабильной — можно даже сказать, что она слишком сбалансирована и выглядит неподвижной.

Блок текста справа нарушает симметрию. Решетке противопоставлен текст и круглый логотип в левом верхнем углу страницы. Эти два элемента имеют примерно равную визуальную массу, воздействующую на решетку с разных сторон. Расстояние до воображаемой точки опоры примерно такое же, как и масса. Блок текста справа больше и темнее, но круглый голубой логотип добавляет веса своей области и даже совпадает с верхним левым углом решетки по цвету. Текст внизу решетки, кажется, свисает с нее, но он достаточно легкий, чтобы не нарушать композиционного равновесия.

Обратите внимание, что пустое пространство тоже кажется сбалансированным. Пустоты слева, сверху и снизу, а также справа под текстом — уравновешивают друг друга. В левой части страницы больше пустого пространства, чем справа, но в правой части есть дополнительное пространство вверху и внизу.

Изображения в шапке страницы Hirondelle USA сменяют друг друга. Скриншот, представленный ниже, был сделан специально для того, чтобы продемонстрировать асимметричное композиционное равновесие.

Скриншот Hirondelle USA

Колонна на фотографии смещена чуть вправо от центра и создает заметную вертикальную линию, поскольку мы знаем, что колонна — это очень тяжелый объект. Перила слева создают прочную связь с левым краем экрана и тоже представляются достаточно надежными.

Текст над перилами как будто опирается на них; к тому же, справа он визуально сбалансирован фотографией мальчика. Может показаться, что перила как бы свисают с колонны, нарушая баланс, но наличие мальчика и более темный фон за ним уравновешивают композицию, а светлый текст восстанавливает баланс в целом.

Примеры радиального равновесия

Домашняя страница Vlog.it демонстрирует радиальное равновесие, что заметно на скриншоте. Все, кроме объекта в правом верхнем углу, организовано вокруг центра, и три кольца изображений вращаются вокруг центрального круга.

Скриншот домашней страницы Vlog.it

Впрочем, на скриншоте не видно, как страница загружается: линия рисуется из нижнего левого угла экрана к его центру — и с этого момента все, что появляется на странице, вращается вокруг центра или расходится из него лучами, как круги по воде.

Маленький круг в правом верхнем углу добавляет трансляционной симметрии и асимметрии, повышая визуальный интерес к композиции.

На домашней странице Opera’s Shiny Demos нет кругов, но все текстовые ссылки расходятся из общего центра, и легко представить, как вся эта конструкция вращается вокруг одного из центральных квадратов или, может быть, одного из углов:

Скриншот домашней страницы Opera’s Shiny Demos

Название Shiny Demos в левом верхнем углу и логотип Opera в правом нижнем — уравновешивают друг друга и тоже как будто исходят из того же центра, что и текстовые ссылки.

Это хороший пример того, что для достижения радиального равновесия не обязательно использовать круги.

Примеры мозаичного равновесия

Вы можете подумать, что мозаичный баланс используется на сайтах реже всего, особенно после того, как в качестве примера были названы картины Джексона Поллока. Но мозаичное равновесие встречается гораздо чаще, чем кажется.

Яркий пример — домашняя страница Rabbit’s Tale. Разбросанные по экрану буквы определенно создают ощущение хаоса, но композиционное равновесие присутствует.

Скриншот домашней страницы Rabbit’s Tale

Почти равные по величине области цвета и пространства, расположенные с двух сторон, справа и слева — уравновешивают друг друга. Кролик в центре служит точкой опоры. Каждый элемент не привлекает внимания сам по себе.

Сложно разобраться, какие конкретные элементы уравновешивают друг друга, но в целом баланс присутствует. Может быть, визуальная масса правой стороны немного больше, но не настолько, чтобы нарушить равновесие.

Сайты с большим количеством контента, например, новостные порталы или сайты журналов, тоже демонстрируют мозаичное равновесие. Вот скриншот домашней страницы The Onion:

Скриншот домашней страницы The Onion

Здесь множество элементов, их расположение не симметрично, размер текстовых колонок не одинаков, и сложно понять, что уравновешивает что. Блоки содержат разное количество контента, и, следовательно, их размеры различаются. Объекты не располагаются вокруг какого-нибудь общего центра.

Блоки разных размеров и плотности создают некоторое ощущение беспорядка. Поскольку сайт обновляется каждый день, структура этого хаоса постоянно меняется. Но в целом равновесие сохраняется.

Заключение

Принципы дизайна во многом берут начало из гештальт-психологии и теории восприятия и опираются на то, как мы воспринимаем и интерпретируем окружающую визуальную среду. Например, одна из причин, по которым мы замечаем фокальные точки, заключается в том, что они контрастируют с элементами вокруг них.

Понятие симметрии встречается как во многих областях человеческой жизни, культуры и искусства, так и в сфере научных знаний. Но что такое симметрия? В переводе с древнегреческого языка это – соразмерность, неизменность, соответствие. Говоря о симметрии, мы часто имеем в виду пропорциональность, упорядоченность, гармоничную красоту в расположении элементов некоей группы или составляющих какого-то предмета.

В физике симметрии в уравнениях, описывающих поведение системы, помогают упростить решение с помощью нахождения сохраняющихся величин.

В химии симметрия в расположении молекул объясняет ряд свойств кристаллографии, спектроскопии или квантовой химии.

В биологии симметрией называются закономерно расположенные относительно центра или оси симметрии формы живого организма или одинаковые части тела. Симметрия в природе не бывает абсолютной, в ней обязательно содержится некоторая асимметрия, т.е. подобные части могут не совпадать со стопроцентной точностью.

Симметрию часто можно встретить в символах мировых религий и в повторяющихся моделях социальных взаимодействий.

Что такое симметрия в математике

В математике симметрию и ее свойства описывает теория групп. Симметрией в геометрии является способность фигур к отображению, при сохранении свойств и формы.

В широком смысле фигура F обладает симметрией, если существует линейное преобразование, которое переводит эту фигуру в саму себя.

В более узком смысле симметрией в математике называется зеркальное отражение относительно прямой с на плоскости или относительно плоскости с в пространстве.

Что такое ось симметрии

Преобразование пространства относительно плоскости с или прямой с считается симметричным, если при этом каждая точка В переходит в точку В" так, чтобы отрезок В В" оказался перпендикулярен этой плоскости или прямой и делился бы ею пополам. В этом случае плоскость с называется плоскостью симметрии, прямая с – осью симметрии. Геометрические фигуры, например правильные многоугольники, могут иметь по несколько осей симметрии, а окружность и шар обладают бесконечным числом таких осей.

К простейшим типам пространственной симметрии относятся:

  • зеркальная (порожденная отражениями);
  • осевая;
  • центральная;
  • симметрия переноса.

Что такое осевая симметрия

Симметрия относительно оси или линии пересечения плоскостей называется осевой. Она предполагает, что если через каждую точку оси симметрии провести перпендикуляр, то на нем всегда можно найти 2 симметричные точки, расположенные на одинаковом расстоянии от оси. В правильных многоугольниках осями симметрии могут являться их диагонали или средние линии. В окружности оси симметрии - ее диагонали.

Что такое центральная симметрия

Симметрия относительно точки называется центральной. В этом случае на равном расстоянии от точки по обе ее стороны находятся другие точки, геометрические фигуры, прямые или кривые линии. При соединении симметричных точек прямой, проходящей через точку симметрии, они будут расположены на концах этой прямой, а серединой ее явится как раз точка симметрии. А если вращать эту прямую, закрепив точку симметрии, то симметричные точки опишут кривые так, что каждая точка одной кривой линии будет симметрична такой же точке другой кривой линии.

К понятию о симметрии мы привыкаем с детства. Мы знаем, что симметрична бабочка: у неё одинаковы правое и левое крылышки; симметрично колесо, секторы которого одинаковы; симметричны узоры орнаментов, звёздочки снежинок.

Проблеме симметрии посвящена поистине необозримая литература. От учебников и научных монографий до произведений, обращающих внимание не столько на чертежи и формулы, сколько на художественные образы.

Сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С ней мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство. Она многообразна, вездесуща. Она создает красоту и гармонию. Симметрия буквально пронизывает весь окружающий нас мир, именно поэтому выбранная мной тема всегда будет актуальной.

Симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям – к поворотам, переносам, взаимной замене частей, отражениям и т. д. В связи с этим выделяют разные виды симметрии. Рассмотрим все виды более подробно.

ОСЕВАЯ СИММЕТРИЯ.

Симметрия относительно прямой называется осевой симметрией (зеркальным отражением относительно прямой).

Если точка А лежит на оси l, то она симметрична самой себе, т. е. А совпадает с А1.

В частности, если при преобразовании симметрии относительно оси l фигура F переходит сама в себя, то она называется симметричной относительно оси l, а ось l называется её осью симметрии.

ЦЕНТРАЛЬНАЯ СИММЕТРИЯ.

Фигура называется центрально-симметричной, если существует точка, относительно которой каждая точка фигуры симметрична некоторой точке той же фигуры. А именно: движение, изменяющее направления на противоположные, является центральной симметрией.

Точка О называется центром симметрии и является неподвижной. Других неподвижных точек это преобразование не имеет. Примерами фигур, обладающих центром симметрии, являются параллелограмм, окружность и т. д.

Знакомые понятия поворота и параллельного переноса используются при определении так называемой трансляционной симметрии. Рассмотрим трансляционную симметрию более подробно.

1. ПОВОРОТ

Преобразование, при котором каждая точка А фигуры (тела) поворачивается на один и тот же угол α вокруг заданного центра О, называется вращением или поворотом плоскости. Точка О называется центром вращения, а угол α - углом вращения. Точка О является неподвижной точкой этого преобразования.

Интересна поворотная симметрия кругового цилиндра. Он имеет бесконечное число поворотных осей 2-го порядка и одну поворотную ось бесконечно высокого порядка.

2. ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС

Преобразование, при котором каждая точка фигуры (тела) перемещается в одном и том же направлении на одно и то же расстояние, называется параллельным переносом.

Чтобы задать преобразование параллельного переноса достаточно задать вектор а.

3. СКОЛЬЗЯЩАЯ СИММЕТРИЯ

Скользящей симметрией называется такое преобразование, при котором последовательно выполняются осевая симметрия параллельный перенос. Скользящая симметрия - изометрия евклидовой плоскости. Скользящей симметрией называют композицию симметрии относительно некоторой прямой l и переноса на вектор, параллельный l (этот вектор может быть и нулевым).

Скользящую симметрию можно представить в виде композиции 3 осевых симметрий (теорема Шаля).

ЗЕРКАЛЬНАЯ СИММЕТРИЯ

Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале, нельзя поставить на место настоящей руки.

Иммануил Кант.

Если преобразование симметрии относительно плоскости переводит фигуру (тело) в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. Такую симметрию называют зеркальной. Как показывает само название, зеркальная симметрия связывает некоторый предмет и его отражение в плоском зеркале. Два симметричных тела не могут быть «вложены друг в друга», так как в сравнении с самим объектом его зазеркальный двойник оказывается, вывернутым вдоль направления, перпендикулярного плоскости зеркала.

Симметричные фигуры при всем их сходстве существенно отличаются друг от друга. Наблюдаемый в зеркале двойник не является точной копией самого объекта. Зеркало не просто копирует объект, а меняет местами (представляет) передние и задние по отношению к зеркалу части объекта. Например, если у вас родинка находится на правой щеке, то у зазеркального двойника на левой. Поднесите к зеркалу книгу, – и вы увидите, что буквы как бы вывернуты наизнанку. В зеркале всё переставлено справа налево.

Зеркально равными телами называются тела, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела.

2. 2 Симметрия в природе

Фигура обладает симметрией, если существует движение (преобразование не тождественное), переводящее ее в себя. Например, фигура обладает поворотной симметрией, если она переводится в себя некоторым поворотом. Но в природе с помощью математики красота не создается, как в технике и в искусстве, а лишь фиксируется, выражается. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В основе строения любой живой формы лежит принцип симметрии. Из прямого наблюдения мы можем вывести законы геометрии и почувствовать их несравненное совершенство. Этот порядок являющийся закономерной необходимостью, поскольку ничто в природе не служит чисто декоративным целям, помогает нам найти общую гармонию, на которой зиждется все мироздание.

Мы видим, что природа проектирует любой живой организм согласно определенной геометрической схеме, причем законы мироздания имеют четкое обоснование.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических.

Говоря о роли симметрии в процессе научного познания, следует особо выделить применение метода аналогий. По словам французского математика Д. Пойа, "не существует, возможно, открытий ни в элементарной, ни в высшей математике, ни, пожалуй, в любой другой области, которые могли быть сделаны без аналогий".В основе большинства этих аналогий лежат общие корни, общие закономерности, которые проявляются одинаковым образом на разных уровнях иерархии.

Итак, в современном понимании симметрия - это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.

Симметрия в мире растений

Специфика строения растений определяется особенностями среды обитания, к которой они приспосабливаются. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево при помощи корневой системы поглощает влагу и питательные вещества из почвы, то есть снизу, а остальные жизненно важные функции выполняются кроной, т. е, наверху. В то же время направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы; по всем этим направлениям к дереву в равной мере поступает воздух, свет, влага.

Дерево имеет вертикальную поворотную ось (ось конуса) и вертикальные плоскости симметрии.

Когда мы хотим нарисовать лист растения или бабочку, то нам приходится учитывать их осевую симметрию. Средняя жилка для листа служит осью симметрии. Ярко выраженной симметрией обладают листья, ветви, цветы, плоды. Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины).

В многообразном мире цветов встречаются поворотные оси разных порядков. Однако наиболее распространена поворотная симметрия 5-го порядка. Эта симметрия встречается у многих полевых цветов (колокольчик, незабудка, герань, гвоздика, зверобой, лапчатка), у цветов плодовых деревьев (вишня, яблоня, груша, мандарин и др.), у цветов плодово-ягодных растений (земляника, малина, калина, черемуха, рябина, шиповник, боярышник) и др.

Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

В своей книге «Этот правый, левый мир» М. Гарднер пишет: «На Земле жизнь зародилась в сферически симметричных формах, а потом стала развиваться по двум главным линиям: образовался мир растений, обладающих симметрией конуса, и мир животных с билатеральной симметрией».

В природе существуют тела, обладающие винтовой симметрией, то есть совмещением со своим первоначальным положением после поворота на угол вокруг оси, дополнительным сдвигом вдоль той же оси.

Если - рациональное число, то поворотная ось оказывается также осью переноса.

Листья на стебле расположены не по прямой, а окружают ветку по спирали. Сумма всех предыдущих шагов спирали, начиная с вершины, равна величине последующего шага А+В=С, В+С=Д и т. д.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное, ботаническое явление носит название филлотаксиса (буквально «устроение листа»).

Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Симметрия в мире животных

Значение формы симметрии для животного легко понять, если поставить её в связь с образом жизни, экологическими условиями. Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Поворотная симметрия 5-го порядка встречается и в животном мире. Это симметрия, при которой объект совмещается сам с собой при повороте вокруг поворотной оси 5 раз. Примерами могут служить морская звезда и панцирь морского ежа. Вся кожа морских звёзд как бы инкрустирована мелкими пластинками из углекислого кальция, от некоторых пластинок отходят иглы, часть которых подвижна. Обычная морская звезда обладает 5 плоскостями симметрии и 1 осью вращения 5-ого порядка (это самая высокая симметрия среди животных). Ее предки, по-видимому, имели более низкую симметрию. Об этом свидетельствует, в частности, строение личинок звезды: они, как и большинство живых существ, в том числе человек, обладают лишь одной плоскостью симметрии. Морские звезды не имеют горизонтальной плоскости симметрии: у них есть «верх» и «низ». Морские ежи похожи на живые подушечки для булавок; шаровидное тело их несёт длинные и подвижные иголки. У этих животных известковые пластинки кожи слились и образовали сферическую раковину панцирь. В центре нижней поверхности имеется рот. Амбулакральные ножки (воднососудистая система) собраны в 5 полос на поверхности раковины.

Однако в отличие от мира растений поворотная симметрия в животном мире наблюдается редко.

Для насекомых, рыб, яиц, животных характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад».

Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой птицы или рыбы, любого животного. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

Кроме направления движения симметрию живых существ определяет еще одно направление - направление силы тяжести. Оба направления существенны; они задают плоскость симметрии животного существа.

Билатеральная (зеркальная) симметрия - характерная симметрия всех представителей животного мира. Эта симметрия хорошо видна у бабочки. Симметрия левого и правого крыла проявляются здесь с почти математической строгостью.

Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов - правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т. д.

Упрощение условий жизни может привести к нарушению двусторонней симметрии, и животные из двусторонне-симметричных становятся радиально-симметричными. Это относится к иглокожим (морские звёзды, морские ежи, морские лилии). Все морские животные имеют радиальную симметрию, при которой части тела отходят по радиусам от центральной оси, подобно спицам колеса. Степень активности животных коррелирует с их типом симметрии. Радиально симметричные иглокожие обычно мало подвижны, перемещаются медленно или же прикреплены к морскому дну. Тело морской звезды состоит из центрального диска и 5-20 или большего числа радиально отходящих от него лучей. На математическом языке эту симметрию называют поворотной симметрией.

Отметим, наконец, зеркальную симметрию человеческого тела (речь идет о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И все же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы.

Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание.

Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию.

Наша собственная зеркальная симметрия очень удобна для нас, она позволяет нам двигаться прямолинейно и с одинаковой лёгкостью поворачиваться вправо и влево. Столь же удобна зеркальная симметрия для птиц, рыб и других активно движущихся существ.

Двусторонняя симметрия означает, что одна сторона тела животного представляет собой зеркальное отражение другой стороны. Такой тип организации характерен для большинства беспозвоночных, в особенности для кольчатых червей и для членистоногих – ракообразных, паукообразных, насекомых, бабочек; для позвоночных – рыб, птиц, млекопитающих. Впервые двусторонняя симметрия появляется у плоских червей, у которых передний и задний концы тела различаются между собой.

Рассмотрим ещё один тип симметрии, который встречается в животном мире. Это винтовая или спиральная симметрия. Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т. е. идёт перемещение вдоль оси винта и вокруг оси винта.

Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце. Хотя внешняя спиральная симметрия у многоклеточных животных встречается редко, зато спиральную структуру имеют многие важные молекулы, из которых построены живые организмы – белки, дезоксирибонуклеиновые кислоты - ДНК.

Симметрия в неживой природе

Симметрия кристаллов - свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических свойств кристалла.

Рассмотрим внимательно многогранные формы кристаллов. Прежде всего, видно, что кристаллы разных веществ отличаются друг от друга по своим формам. Каменная соль - это всегда кубики; горный хрусталь - всегда шестигранные призмы, иногда с головками в виде трехгранных или шестигранных пирамид; алмаз - чаще всего правильные восьмигранники (октаэдры); лед - шестигранные призмочки, очень похожие на горный хрусталь, а снежинки - всегда шестилучевые звездочки. Что бросается в глаза, когда смотришь на кристаллы? Прежде всего, их симметрия.

Многие думают, что кристаллы - это красивые, редко встречающиеся камни. Они бывают разных цветов, обычно прозрачные и, что самое замечательное, обладают красивой правильной формой. Чаще всего кристаллы представляют собой многогранники, стороны (грани) их идеально плоские, рёбра строго прямые. Они радуют глаз чудесной игрой света в гранях, удивительной правильностью строения.

Однако кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строем дома и станки, вещества, которые мы употребляем в быту, - почти все они относятся к кристаллам. Почему же мы этого не видим? Дело в том, что в природе редко попадаются тела в виде отдельных одиночных кристаллов (или как говорят монокристаллов). Чаще всего вещество встречается в виде прочно сцепившихся кристаллических зёрнышек уже совсем малого размера - меньше тысячной доли миллиметра. Такую структуру можно увидеть лишь в микроскоп.

Тела, состоящие из кристаллических зёрнышек, называются мелкокристаллическими, или поликристаллическими ("поли" - по-гречески "много").

Конечно, к кристаллам надо отнести и мелкокристаллические тела. Тогда окажется, что почти все окружающие нас твёрдые тела - кристаллы. Песок и гранит, медь и железо, краски - всё это кристаллы.

Есть и исключения; стекло и пластмассы не состоят из кристалликов. Такие твёрдые тела называются аморфными.

Изучать кристаллы - это значит изучать почти все окружающие нас тела. Понятно, как это важно.

Одиночные кристаллы сразу же узнают по правильности форм. Плоские грани и прямые рёбра являются характерным свойством кристалла; правильность формы несомненно связана с правильностью внутреннего строения кристалла. Если кристалл в каком-то направлении особо вытянулся, значит, и строение кристалла в этом направлении какое-то особенное.

Есть центр симметрии и в кубике каменной соли, и в восьмиграннике алмаза, и в звёздочке снежинки. А вот в кристаллике кварца центра симметрии нет.

Наиболее точная симметрия осуществляется в мире кристаллов, но и здесь она неидеальная: невидимые глазом трещинки, царапины всегда делают равные грани слегка отличными друг от друга.

Все кристаллы симметричны. Это значит, что в каждом кристаллическом многограннике можно найти плоскости симметрии, оси симметрии, центр симметрии или другие элементы симметрии так, чтобы совместились, друг с другом одинаковые части многогранника.

Все элементы симметрии повторяют одинаковые части фигуры, все придают ей симметричную красоту и завершенность, но центр симметрии, - самый интересный. От того, есть ли в кристалле центр симметрии или нет его, могут зависеть не только форма, но и очень многие физические свойства кристалла.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

III Заключение

Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты Она, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.

Мы видим, что природа проектирует любой живой организм согласно определенной геометрической схеме, причем законы мироздания имеют четкое обоснование. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии, как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

Итак, на плоскости мы имеем четыре вида движений, переводящих фигуру F в равную фигуру F1:

1) параллельный перенос;

2) осевая симметрия (отражение от прямой);

3) поворот вокруг точки (Частичный случай – центральная симметрия);

4) «скользящее» отражение.

В пространстве к вышеперечисленным видам симметрии добавляется зеркальная.

Считаю, что цель, поставленная в реферате, достигнута. При написании реферата наибольшей сложностью для меня стали собственные выводы. Думаю, что моя работа поможет школьникам расширить представление о симметрии. Надеюсь, что мой реферат войдет в методический фонд кабинета математики.