Способы защиты рентгеновских трубок. Защита от вредного влияния рентгеновых лучей. Рентгеноскопия. Стационарные средства радиационной защиты

к практическому занятию "Основные способы защиты от вредностей в рентгеновских кабинетах"

В основу пособия положены "ОБЩЕСОЮЗНЫЕ САНИТАРНО-ГИГЕНИЧЕСКИЕ ПРАВИЛА-И НОРМЫ - СанПид 42-129-11-4О90-86" ,МЗ СССР (1986) "Рентгенологические отделения. Санитарно-гигиенические нормы". (Действующие на территории Украины с 1986г.)

РЕНТГЕНОВСКИЕ ЛУЧИ - не видимые глазом электро-магнитные лучи

(излучение) с длиной волны от 10-5 до 10-2 нм.

Открыты в I895г В. РЕНТГЕНОМ.

:Источник(генератор) рентгеновского излучения - РЕНТГЕНОВСКАЯ ТРУБКА

РЕНТГЕНОВСКАЯ ТРУБКА - электровакуумный прибор для получения рентгеновских лучей. Простейший вариант - стеклянный баллон с впаянными электродами:

КАТОДОМ(-):тугоплавкаянить(нити)
из вольфрама в виде спирали

и АНОДОМ(+):массивный медный чехол, обращенный к катоду скошенным концом(торцом),в толщу которого впаяна вольфрамовая - пластинка толщиной 2-2,5 мм(зеркало анода) являющаяся мишенью, куда
фокусируется поток электронов с катода, т. е. анод-это рентгенооптический фокус трубки. Под действием тока высокого напряжения, электроны испускаемые ка­тодом ускоряются, проходят в безвоздушном пространстве между электродами и бомбардируют анод - "тормозятся" об анод. При этом энергия электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается) и лишь незначительная часть (около 1% при напряжении близко к 100кв) превращается в энергию тормозного рентгеновского излучения.

РЕНТГЕНОВСКИЕ лучи имеют двойственные свойства (с одной стороны - это электромагнитное излучение со всеми свойствами ему присущими, с другой - это излучение обладает эффектом ионизации).


СВОЙСТВА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ КАК ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ :

а)прямолинейное распространение в среде

б)рассеяние в среде по закону пропорциональности квадрату расстояния в)ослабление в среде с учетом слоя половинного ослабления

г)отражение от поверхностей по закону «угол падения равен углу отражения»

(Выше перечисленные свойства рентген. излучения используются при защите)

СВОЙСТВА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ КАК РАЗНОВИДНОСТИ ИОНИЗИРУЮЩЕГО (РАДИОАКТИВНОГО)ИЗЛУЧЕНИЯ:

а) ионизация среды(используется в дозиметрии) б)фотографическое действие. Используется в рентгенографии)

в) люминесцентное - действие (используется в рентгеноскопии)

г) биологическое действие (влияние на рост и развитие клеток живого организма, в первую очередь - молодых, незрелых, - что использу­ется в рентгеноскопии).

РЕНГЕНОВСКИЙ АППАРАТ - это совокупность оборудования, предназначенного для получения и использования (с диагностической или лечебной целью) рентгеновского излучения.

В Украине с I962 г. используются только ЗАКРЫТЫЕ рентгеновские аппараты (закрытый рентгенаппарат - аппарат, все части которого, находящиеся под высоким напряжением относительно земли, окружены защитными оболочками, .защищающими от случайного соприкосновения с частями находящимися под током).

РЕНГЕНОВСКИЙ КАБИНЕТ : совокупность помещений, где располагается рентгеновский аппарат и вспомогательное оборудование, предназначенное для рентгенологического исследования или лечения.

В зависимости от характеристики работы, проводимой в рентгенкабинетах и от типа рентгеновского аппарата, - рентгеновские кабинеты делятся на:

1) рентгенодиагностические

2)рентгенофлюорографические

3)рентгенотерапевтические

Существует 3 варианта размещения рентгеновских кабинетов в лечебных

учреждениях:

1)централизованный (в виде единого комплекса, т. е. рентгеновского отделения

3.3.Рентгеновские отделения (кабинеты) не должны размещаться в

подвальном и цокольном этажах (при расположении пола цокольного этажа ниже планировочной отметки тротуара более чем на 0,5 м

3.4. Высота рентгеновского кабинета должна быть не менее 3 м. Высота кабинета с нестандартной аппаратурой должна устанавливаться в зависимости от размера последней

3.5..Отношение ширины и глубины процедурной рентгеновских кабинетов

не должно превышать 1:1,5 (1,5:1)

3.6.Ширина полотна дверей в процедурной рентгеновских кабинетов

должна составлять не менее 1,2м.

3.7.При расположении кабинетов выше первого этажа и расстоянии до соседних зданий более 50м допускается отсутствие радиационной защиты -(ставень) на окнах процедурной.

3.8.Hабор и площадь помещений рентгеновских кабинетов и отделений должны быть

НЕ МЕНЕЕ:

Наименование помещений площадь, не менее

1.РЕНТГЕНОДИАГНОСТИЧЕСКИЙ КАБИНЕТ

для общих исследований:

Процедурная с поворотным столом-штативом 34_м2

Процедурная с поворотным столом-штативом, с

рентгенокимографом или рентгенополярографом 45 м2 процедурная со столом снимков с приставкой

для томографии 24 м2

Комната управления 10 м2

Фотолаборатория на один кабинет 10 м2

Фотолаборатория на два кабинета 12 м2

Комната врача на один кабинет 10 м2

Комната врача на два кабинета14 м2

Туалет для пациентов (в кабинетах для
исследования желудочно-кишечного тракта) 1,6 1,1 м2

2. РЕНТГЕНОФЛЮОРОГРАФИЧЕСКИЙ КАБИНЕТ :

Процедурная 20 м2

Раздевалка (в кабинете для массовых обследований) 15 м2

Комната для ожидания (в кабинете для массовых

обследований) 16 м2

Фотолаборатория 10м2

3.КАБИНЕТЫ РЕНТГЕНТЕРАПИИ

Процедурная 24 м2

Комната управления 15 м2

Комната врача (смотровая) 10 м2

ПРИМЕЧАНИЕ: в виде исключения допускается функционирование рент­геновских кабинетов без комнат управления и при площади помещений ниже требуемой до 20%

ПРИМЕЧАНИЕ: наличие в воздухе кабинетов озона и окислов азота в норме быть не должно.

III. ЗАЩИТА ОТ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ: Рентгеновское излучение делится на:

а) первичное (прямое) излучение - возникает на аноде рентген - трубки (прямой рабочий пучек+неиспользованное излучением).Действию прямого излучения подвергается ПАЦИЕНТ!

б) вторичное (рассеянное) излучение - в веществе или вне его, возникает
в результате преобразования рассеяния веществом первичного излучения
(подвергается персонал).

Одной из основных мер защиты персонала является установления для персонала ПДД излучения, согласно требованиям НОРМ радиоционной безопасности (НРБ) - 76).

ДОЗОЙ рентгеновского излучения называется мера излучения, основанная на его ИОНИЗИРУЮЩЕЙ СПОСОБНОСТИ. Единица дозы - рентген.

Рентген - это доза излучения, при которой в 1см3 ВОЗДУХА при нормальных условиях (при 0°С и давлении 760 мм рт. ст.) образуется около 2 млдр. пар ионов с зарядом в одну электростатическую единицу.

(При измерении дозы, основной на эффекте ИОНИЗАЦИИ ЖИВОГО организма - речь идет о БЭРе: биологическом эквиваленте рентгена)

ПРЕДЕЛЬНО ДОПУСТИМАЯ ДОЗА ИЗЛУЧЕНИЯ – наибольшая доза (уровень), эффективное действие которой на организм не вызывает отрицательного воздействия на потомство, в свете современных научных данных. (Время действия - в течении всей жизни, или в течение 50 лет (50 лет – максимальный профессиональный стаж).

При эксплуатации рентгеновских кабинетов должны использоваться предельно допустимые уровни (ПДУ) излучения, согласно СанПиН - 86:

Уровни излучения (а также ПДУ) устанавливаются на ВНЕШНЕЙ ПОВЕРХНОСТИ ЗАЩИТЫ для фактического расстояния от рентгеновской трубки до этой поверхности.

- Согласно НРБ - 76 для персонала (категория А) установленны ПДД:

не более: 5 бэр в год

0,1 бэр в неделю 0,17 бэр в день

А. ЗАЩИТА ОТ ПЕРВИЧНОГО (ПРЯМОГО) РЕНТГЕНОВСКОГ
ИЗЛУЧЕНИЯ:

Создание однородного пучка излучения (фильтрация «мягких»
лучей (- с помощью фильтра

Создание узкого пучка (диафрагма, тубус)

Односторонняя направленность рабочего пучка

Сокращение времени работы под лучом (хорошая темновая
адаптация при скопии)

Соблюдение кожно - фокусного расстояния при терапии

Б. ЗАЩИТА ОТ ВТОРИЧНОГО (РАССЕЯНОГО) РЕНТГЕНОВСКОГО
ИЗЛУЧЕНИЯ:

Защитное стекло на экране

Защитные ширмы: большая защитная ширма на рабочем месте
врача, малая ширма - на р. месте лаборанта

Двулопастный резиновый фартук под экраном, для защиты врача

Защитная одежда врача: нагрудный фартук, юбка, перчатки и
шапочка (все из просвинцованной резины)

Добавление в побелочный материал сернокислого бария (для
поглощения вторичного излучения)

Запрещение облицовки стен плиткой (угол падения равен углу
отражения!), с той же целью - не допускаются панели, тем больше
отражение!

Защитные перегородки: барьер, стена, смотровое окно

В зависимости от этого, диагностика или терапия, - кроме экранов,
- остальные три вида классической защиты: количеством,
расстоянием, временем

Правильная планировка кабинета (отделения) - согласно
специальным проектам, а не в приспособленных помещениях!

В. ЗАЩИТА ПАЦИЕНТОВ В ОЖИДАЮЩИХ рентгенологических
исследований:

Защита пациента: меры, направленные на то, чтобы доза
облучения, получаемая пациентом, была снижена до минимального
уровня, при котором возможно успешное рентгенологическое
исследование.

а) защитные барьеры рентгенаппаратов и между местом ожидания

б) устройство защитных кабин для ожидающих

в) нахождение в процедурной не более одного пациента

г) хорошая темновая адаптация врача при скопии

д) кожно - фокусное расстояние: не менее 25 см при рентгеноскопии и не
менее 12,5 см при детальных исследованиях

е) при диагностике - ограничение облучаемых полей с помощью тубусов,
диафрагм

ж) экранирование просвинцованными приспособлениями частей тела
пациента, которые не являются объектом исследования и, прежде всего -
половых органов

з) защитные приспособления для лиц, которые привлекаются для
поддержки пациентов во время рентгеноисследований

Г. ЗАЩИТА ЛЮДЕЙ, НАХОДЯЩИХСЯ В СМЕЖНЫХ ПОМЕЩЕНИЯХ:

Учитываются защитные свойства стен, перегородок, перекрытия
между рентгенкабинетом и снежными помещениями

Рядом и выше не должно быть помещений, где живут, работают
или находятся на излечении (больничные палаты) люди

Учитываются защитные свойства дверей и окон рентгенкабинетов

Использование защитных дверей, смотровых окон и защитных
ставень

Защитная планировка рентгенкабинета (специальный проект, а не
приспособленные помещения!)

Рентгеновское излучение обладает биологическим действием на органы, ткани и на весь организм в целом. Необходимым для работы в рентгеновских кабинетах является создание условий безопасности как для больного, так и для обслуживающего персонала.

Защитные мероприятия сводятся в общем к следующим трем видам:
- защита экранированием,
- защита временем,
- защита расстоянием.

Защитные экраны - это комплекс сооружений из поглощающих материалов, расположенных между источником рентгеновского излучения и телом облучаемого. Сильнее всего рентгеновы лучи поглощаются свинцом благодаря его высокому атомному весу и большому порядковому числу в таблице Менделеева. Поэтому защитные экраны делаются из свинца или из материала, в котором имеется свинец. Изготовляют защитные ширмы различных размеров, фартуки, перчатки из просвинцованной резины и т. д. Для защиты глаз и лица исследователя флюоресцирующий экран со стороны врача покрывается просвинцованным стеклом.

У больных органы , не подлежащие исследованию, должны быть надежно экранированы от облучения за счет уменьшения объема пучка излучения, или закрыты защитными приспособлениями. Обычные строительные (материалы (бетон, кирпич) также достаточно сильно поглощают рентгеновы лучи. При расчете защитного действия этих материалов надо только знать их свинцовый эквивалент, т. е. величину, показывающую скольким миллиметрам свинца соответствует в отношении защиты от рентгеновского излучения определенная толщина данного строительного материала.

Защита временем предусматривает ограниченное пребывание в сфере воздействия рентгеновского излучения. При исследованиях больных необходимо стремиться к тому, чтобы время, в течение которого больной был вынужден находиться под лучами, было минимальным.

Защита расстоянием основана на использовании закона обратных квадратов. Отсюда и правило: как обследуемые, так и персонал должны находиться на максимальном расстоянии от трубки рентгеновского аппарата.

Рентгеноскопия

Методы рентгенологического исследования делятся на основные и специальные. К основным относятся рентгеноскопия и рентгенография, а специальным, - все остальные методы, связанные с использованием рентгеновского излучения.

Рентгеноскопия - просвечивание органов и систем с применением рентгеновых лучей. Рентгенография - производство снимков с помощью рентгеновского излучения. Каждый из этих методов имеет свои особенности, преимущества, недостатки и показания.
Рентгеноскопию можно подразделить на следующие виды: рентгеноскопия с флюоресцирующего экрана, скопил с экрана электронно-оптического усилителя и скопия с кинескопа телевизора.

Показаниями к рентгеноскопии надо считать только обследование больных с заболеваниями органов грудной и брюшной полостей, преимущественно взрослого населения. Этот метод должен ограниченно использоваться в детской практике и не должен применяться для целей профилактических осмотров.

Скопия с экрана электронно-оптического усилителя. Введение электронно-оптического усилителя в клиническую практику в корне изменило отношение к рентгеноскопии и способствовало дальнейшему развитию этого метода на новой основе.

Благодаря использованию ЭОУ стало возможным широкое внедрение для диагностических целей зондирования сосудов, полостей сердца, интраоперационные изучения желчевыделительной системы, рент-генохирургические операции.
К недостаткам этого метода следует добавить невозможность рентгенопальпации под контролем экрана. Существенным неудобством ЭОУ остается то, что окуляр или оптическое приспособление ЭОПа можно рассматривать в лучшем случае двум исследователям при нерегулируемой яркости и резкости изображения.

Скопия с экрана телевизора . Это более совершенный вид визуального наблюдения за функционирующими и системами человека. Применение рентгенотелевидения исключает все выше перечисленные недостатки рентгеноскопии и скопии с экрана ЭОП.

Одним из немногих недостатков рентгенотелевидения является небольшое поле обзора по сравнению с флюоресцирующим экраном рентгеноаппарата. На экране телевизора отображается поле, которое охватывает ЭОУ, оптимальным диаметром усилителя считается 22,5 см (9 дюймов), а флюоресцирующий экран рентгеноаппарата 35х35 см.

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства индивидуальной защиты пациента;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2) .

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат Площадь, кв. м (не менее)
Предусматривается
использование
каталки
Не предусматривается
использование
каталки
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
РДК с ПСШ, стойкой снимков, штативом снимков 34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
Аппарат для маммографии 6
Аппарат для остеоденситометрии 8

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

Наименование помещений Площадь кв. м (не менее)
1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
- процедурная 8
- фотолаборатория 6
2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
- процедурная 6
3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
- процедурная 8
- комната управления 6
- фотолаборатория 8

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитных пластин 1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;

Работа с рентгеновским излучением без надлежащей защиты вредна для здоровья. Результатом продолжительного воздействия рентгеновского излучения на человеческое тело являются обнаруживаемые лишь в последствии ожоги кожи, изменения в составе крови и повреждения внутренних органов. Поэтому при работе с рентгеновскими аппаратами необходима защита персонала от прямого и косвенного облучения рентгеновскими лучами.Все работники радиологических отделений и кабинетов, лица, находящихся в смежных помещениях, а также пациенты подвергающиеся исследованию или лечению, должны быть надежно защищены от вредного действия излучений. Защитой называется совокупность устройств и мероприятий, предназначенных для снижения физической дозы излучения, воздействующей на человека, ниже предельно допустимой дозы.Исходными факторами при построении защиты является установленная медицинской практикой предельно допустимая доза или условно безвредная доза. Принято полагать, что при облучении рентгеновским или гамма-излучением ПДД равна 0,05 рентгена в день.

Кроме того, биологическое действие рентгеновского излучения зависит от того, какие участки тела человека подвергаются облучению. При защите особо чувствительных к воздействию рентгеновского излучения органов тела значение мощности дозы в 0,05 р/день считается максимально допустимым и его следует снижать. Напротив, при облучении небольших участков кожного покрова оно является минимальным и может быть даже несколько увеличено.

Защита от вредного действия рентгеновского излучения сводится к ослаблению интенсивности излучения трубки до указанного значения путем увеличения расстояния от фокуса трубки, а также помещением между трубкой и защищаемым объектом поглощающих экранов (стенок). Для уменьшения рассеянного излучения защиту размещают возможно ближе к рентгеновской трубке.

Однако, так как вторичное рассеянное излучение всегда неизбежно возникает при попадании первичного излучения на облучаемый (исследуемый) объект и на окружающие предметы, то кроме защиты от первичных лучей необходима защита и от вторичного рассеянного излучения.

Кроме свинца в качестве защитных материалов используется свинцовое стекло, просвинцованная резина, железо (сталь) и строительные материалы: кирпич, бетон, баритобетон, а иногда и вода.

Защитные свойства этих материалов принято характеризовать «свинцовым эквивалентом А», под которым понимается «выраженная в миллиметрах толщина свинца, ослабляющая мощность физической дозы в воздухе в той же мере, как и данный образец защитного устройства. Часто защитные материалы характеризуются обратной величиной «линейным эквивалентом миллиметра свинца», который означает выраженную в миллиметрах толщину защитного слоя, действие которого эквивалентно слою свинца толщиною в 1 мм (на это число следует умножить толщину необходимого свинцового слоя, чтобы получить толщину защитного слоя из данного материала).



При жестком излучении ослабление определяется главным образом, зависящим в первом приближении только от плотности вещества (р).Таким образом, при жестком излучении (выше 500-800 кв) преимущество свинца резко снижается.Защитные свойства свинцового стекла и свинцовой резины приблизительно пропорциональны содержанию свинца (плотности стекла).Защитные свойства различных материалов удобно характеризовать слоем десятикратного ослабления, т.е. толщиною слоя вещества, после прохождения, которого интенсивность излучения ослабляется в 10 раз. Эта характеристика значительно облегчает расчеты защиты. Например, для ослабления излучения в 100 раз необходимо взять толщину защитного вещества, равную двум слоям десятикратного ослабления. Очевидно, п слоев десятикратного ослабления снизит интенсивность излучения в 10й раз.Защита от рентгеновского излучения в широко распространенных диагностических и терапевтических установках, работающих при напряжениях ниже 110 кв, достигается применением защитных трубок. При этом необходимо следить за тем, чтобы необходимый для исследования первичный пучок лучей после прохождения через исследуемое тело полностью поглощался защитным материалом. В качестве защитного слоя достаточно пластин металлического свинца толщиною 2 мм или эквивалентного слоя какого-либо другого защитного вещества, например свинцовой резины толщиною 6 мм, свинцового высокопроцентного стекла (до 60-70 % свинца) толщиною 8-10 мм или баритового бетона толщиною около 30 мм (состав: 80 % по весу барита BaSO4 и 20 % цемента).В терапевтических рентгеновских аппаратах, работающих при напряжениях до 200-220 кв, защита более совершенна, так как жесткие рентгеновские лучи, попадая на другие тела, например на потолок, стены и т.п., вызывают вторичное рассеянное излучение, которое действует на работающий в этом помещении персонал. Поэтому работающие с установками этого типа защищены не только от непосредственного попадания лучей, исходящих из фокуса трубки, но также и от вторичных лучей, распространяющихся по всем направлениям.Трубка заключена в защитный кожух, покрытый металлическим свинцом толщиною 5 мм (безопасные или защитные трубки). Одновременно предусмотрена защита и от используемого для исследования пучка лучей. Персонал должен находится в соседнем помещении, отделенном защитной стенкой достаточной толщины, или должна быть сооружена защитная кабина, со всех сторон покрытая свинцом толщиною 5 мм или слоем других материатов соответствующей толщины: свинцовой резиной толщиною 15 мм, свинцового стекла (около 70 % свинца) толщиною 20-25 мм и баритового бетона толщиною 70 мм.Рентгеновские установки на более высокие напряжения помещаются в специальном помещении, огражденном со всех сторон защитными стенами, толщина которых соответствует нормам защиты.Проверка надежности защиты, производится фотодозиметрами (фотопленкой в конвертах из черной бумаги), размещенными в различных местах помещения на одну-две недели, а затем по степени зачернения пленки после проявления судят о рассеянных рентгеновских лучах в данном месте.Более точным является контроль защиты с помощью универсального дозиметра для гамма- и рентгеновского излучения (ГРИ) с набором сменных ионизационных камер, устанавливаемых в местах контроля и измеряющих макро- и микродозы.При проверке отсутствия щелей или повреждений в защитных стенах, ширмах, щитах пользуются ионизационными камерами малого объема, так как в противном случае интенсивный узкий пучок, проникающий через щель, будет ионизировать только часть объема воздуха в большой камере и следовательно, показания дозиметра будут неправильными (преуменьшенными). Важной является также защита от действия вредных для организма газов (озон и азотные соединения), которые образуются при работе рентгеновской установки в искровых промежутках и на остриях высоковольтной проводки. Удаление этих газов из помещения рентгеновских аппаратов осуществляется вытяжной вентиляцией. Ввиду того, что эти газы тяжелее воздуха, вытяжные каналы размещены не под потолком, а невысоко над уровнем пола.



Основными устройствами защиты от вредною для здоровья рентгеновского излучения являются стационарные и нестационарные. Стационарные - стены, перекрытия, защитные двери, смотровые окна, стенки для местной защиты обеспечивают защиту от прямого и рассеянного излучения. Исходя из мощности рентгеновских установок и активности радиоактивных веществ, рассчитывают толщину всех защитных устройств. В частности, для изготовления стен применяют кирпич, бетон, бариго-бетон, баритовую штукатурку. Барит содержит барий и поэтому в значительной степени поглощает ионизирующее излучение. Двери в радиологические кабинеты обивают листовым свинцом или делают из металла. В смотровые окна вставляют просвинцованное стекло значительной толщины. Нестационарными устройствами называют перемещаемые приспособления, предназначенные для защиты персонала и больных, находящихся в тех же помещениях, где расположены источники излучений.

К числу нестационарных устройству, принадлежат различные ширмы. Они изготавливаются из материала, поглощающего излучение, и устанавливаются в радиологических кабинетах таким образом, чтобы предохранить работников и больных от действия излучения.Высокими защитными ширмами огорожены рабочие места лаборантов в рентгенодиагностических кабинетах. Малая защитная ширма отделяет врача-рентгенолога от пациента, которого он исследует.Рентгеновские трубки в аппаратах защищены металлическими кожухами различных размеров и толщины. В рентгенодиагностических кабинетах малая защитная ширма отделяет врача-рентгенолога от пациента, которого он исследует.Рентгеновские трубки в аппаратах защищены металлическими кожухами различных размеров и толщины. В рентгенодиагностических и рентгенотерапевтических аппаратах перед выходным окном трубок установлены медные пластины фильтры для фильтрации рентгеновских лучей малой интенсивности, Перед выходным окном рентгеновской трубки в терапевтических аппаратах укреплены тубусы, ограничивающие пучок излучения. В диагностических аппаратах в основании тубуса укреплена створчатая диафрагма, состоящая из подвижных створок, с помощью которых врач-рентгенолог дистанционным управлением формирует рабочий пучок излучения до требуемой величины.К числу нестационарных защитных устройств принадлежат приспособления индивидуальной защиты: фартуки из просвинцованной резины, защитные юбочки, перчатки, шапочки.Участки тела пациента, которые не должны подвергаться облучению, покрывают листами из просвинцованной резины или специальными свинцовыми пластинами. Персонал радиологического отделения обеспечивается одеждой, состоящей из халата, пластикового фартука с нагрудником, пластиковых нарукавников, резиновых перчаток, тапочек, бахил и галош, очков или щитков из органического стекла, респираторов.Все эти предметы предназначены для защиты от попадания на поверхность тела или внутрь организма радиоактивных веществ. Работа с радиоактивными препаратами производится на специальных столах за защитными ширмами, свинцовыми экранами с использованием контейнеров и дистанционного инструмента. При работе с жидкими изотопами применяются автоматические и механические приспособления для разлива и забора препаратов (специальные шприцы, пипетки).Существенным фактором лучевой безопасности является рациональное расположение рабочих мест персонала с максимально возможным удалением их от источников излучения - это так называемая защита расстоянием. Защита расстоянием очень действенна, поскольку интенсивность облучения убывает обратно пропорционально квадрату расстояния от источника до облучаемой поверхности. Поэтому мощные источники излучения - гамма-установки, линейные ускорители, бетатроны - принято устанавливать в больших помещениях и в отдалении от стен. При планировке рентгенодиагностических кабинетов также всегда ставят целью максимальное удаление места работы врача-рентгенолога и лаборанта от точек наивысшего уровня радиации. Весьма важным фактором снижения радиационной нагрузки является максимальное сокращение времени пребывания персонала и больных в сфере действия ионизирующих излучений. Для сотрудников радиологических отделений установлен четырех-шестичасовой рабочий день и дополнительный отпуск.

IV.Заключение

Собрав весь нужный материал, и проделав самостоятельную работу, выполнили все поставленные задачи и ответили на поставленные вопросы. Мы узнали, что такое рентгеновское излучение, узнали о его видах, о характере данного излучения, также в ходе работы узнали о том, в каких целях применяется рентгеновское излучение в медицине, т.к. каждый будущий врач должен обладать этими знаниями.

V.Список использованной литературы

МЕРЫ ЗАЩИТЫ ОТ ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Рентгеновские аппараты

www.medical-enc.ru

http://www.all-fizika.com/article/index.php?id_article=1983

www.all-fizika.com

Рентгеновские трубки

Характеристическое рентгеновское излучение

Санитарно-гигиенические требования и мероприятия по защите от источников ионизирующих излучения на производстве, определяются:

Активностью источников;

Их агрегатному состоянию;

Видом и энергией излучения;

Количеством вещества;

Характером технологического процесса. Для безопасности работ с источниками радиоактивных излучений

необходимую защиту как от внешнего, так и от внутреннего облучения.

Задача при обеспечении радиационной безопасности состоит в том, чтобы не допустить излучения выше предельно. Оно обеспечивается путем применения комплекса организационных и технологических мероприятий, в том числе "защиты временем" и "защиты расстоянием".

Доза гамма излучения:

где: Д - доза у-излучения, Р; и y - ионизационная стала данного изотопа, А - активность, мКи; t - время облучения, ч.; l - расстояние от источника, м.

Из формулы видно, что доза облучения тем меньше, чем меньше время излучения - "защита временем" и чем больше расстояние от источника излучения - "защита расстоянием».

"Защита время" во время работы достигается соответствующей подготовкой и организацией работ, составлением и соблюдением графиков, согласно которым при контакте с источниками излучения минимальный, а производительность труда остается достаточно высокой.

"Защита расстоянием" при работе с радиоактивными веществами незначительной активности предусматривает использование ручных манипуляционных захватов и дистанционных универсальных манипуляторов. Ручные манипуляционные захваты передают движения и усилия рук оператора на некоторое расстояние с соответствующим увеличением этих движений и усилий. Удаленные универсальные манипуляторы позволяют выполнять различные операции по захвату и перемещению предметов, ориентации их под любым углом и др. Они обладают несколькими степенями свободы, ими можно управлять с большого расстояния с помощью рукояток, при этом оператор пальцами испытывает нагрузку и силу от захватов манипулятора. Наблюдение за работой осуществляется с помощью телевизионных систем, системы зеркал и перископов.

При работе с радиоактивными веществами большой активности применяют автоматизированное оборудование, системы дистанционного управления.

Экранирование является наиболее эффективной защитой от радиоактивного облучения, так как позволяет снижать дозу облучения на рабочем месте до предельно уровня. Проектируя защитные экраны, следует определить толщину и материал экрана с учетом вида и энергии излучения.

Защитные экраны от а-излучения, как правило, не применяются, так как оно имеет малую проникающую способность. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда, резиновые перчатки и др.) Обеспечивают достаточно полное поглощение а-излучения.

Поглощение потока β-излучения может быть определено, если толщина защитного экрана может быть примерно определена по формуле:

В защитных экранах для поглощения потока β-излучения применяют алюминий, стекло, плексиглас, свинец с облицовкой материалами с малым атомным номером. Свинец применяется при экранировании β излучений высоких энергий, так как это излучение при прохождении через вещество вызывает вторичное излучение (рентгеновское, в-излучения и нейтронов).

Экраны для защиты от у-излучения выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобетон, чугун, сталь, одновременно являются элементами строительных конструкций.

Если известен уровень излучения на рабочем месте без защиты, то толщину защитных экранов от у-излучений можно определить по формуле:

Защита от нейтронов осложняется тем, что они очень плохо поглощаются веществом. В связи с этим защита от нейтронов заключается в замедлении быстрых нейтронов и последующем поглощении уже замедленных. Защитными материалами от быстрых нейтронов является вода, парафин, графит, бериллий и ин.ш.

Тепловые нейтроны хорошо поглощаются бором, кадмием.

Применяют защитные экраны различных конструкций: стационарные, передвижные, разборные, настольные.

При работе с малыми уровнями излучения используют вытяжные шкафы и боксы, отличающиеся достаточной герметичностью, оборудованные манипуляторами и приточно-вытяжной вентиляцией (7.1).

При транспортировке и хранении радиоактивных веществ используют контейнеры и сейфы, выполненные из стали, свинца, чугуна.

Для устранения попадания внутрь организма светящихся соединений (в настоящее время они применяются в исключительных случаях по шкалам приборов и ручках управления), вызывающие внутреннее облучение, необходимо соблюдать правила личной гигиены (мыть руки теплой водой с мылом перед едой, курением и др.) И исключать возможность их распыления и попадания в воздух производственных помещений.

Работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально отведенных помещениях с санитарно-техническим оборудованием и системой вентиляции.

Техническое обслуживание и работа на установках с радиоактивными изотопами должна выполняться работниками не моложе 18 лет, прошедшие медицинский осмотр и специальное обучение безопасным методам работы на данной установке. Эти работники должны находиться под постоянным контролем, для них регламентируется продолжительность рабочего дня, выдается спецодежда, приборы индивидуального дозиметрического контроля

При работе с радиоактивными веществами безопасность зависит в значительной степени от своевременного выявления и измерения уровня излучения.

Измерение осуществляется специальными приборами - радиометрами, использующих различные методы - ионизационный сцинтилляционный, фотографический и химический. Для измерения альфа-, бета-, гамма и рентгеновского излучений и тепловых нейтронов применяются универсальные радиометры типов РКС2-01 и УИМ2-1 и другие.

В процессе работы с радиоактивными веществами большое значение имеет применение средств индивидуальной защиты. Они должны предохранять кожу от загрязнений радиоактивными веществами и предотвращать их попадание внутрь организма.

К средствам индивидуальной защиты относятся: спецодежду, перчатки, респираторы, пневмокостюмы, бахилы. Для непосредственной работы с радиоактивными веществами применяют средства индивидуальной защиты, изготовлены из прочного, хорошо дезактивированного поливинилхлоридного пластика.

Органы дыхания защищают респираторами "Снежок-К", "чтб-1" и "Лепесток". В процессе работы в ремонтной зоне, при осмотре и вскрытии боксов и другого технологического оборудования, загрязненного радиоактивными веществами, применяют пневмошлемы типа "Лиз-4" с индивидуальной подачей в них воздуха.

Рентгеновское излучение

В процессе технической эксплуатации радиоаппаратуры, когда питающее напряжение радиоаппаратуры выше 15 кВ, необходимо обязательно использовать защитные средства для предотвращения облучению операторов и инженерно-технических работников рентгеновским излучением, так как при таких напряжениях рентгеновское излучение рассеивается в окружающем пространстве производственного помещения.

Предельно допустимые дозы рентгеновского облучения предусмотрены санитарными нормами:

Для всего тела человека в течение недели не более 100 мр (миллирентген)

Только рук - 500 мр (80 мр в день).

В смежных помещениях с рентгеновской установкой доза облучения в течение недели не должна превышать 10 мр, а в близлежащих домах мощность дозы не должна превышать дозу нормального фона более чем на 0,01 мр в час.

Как защитные средства от действия мягких рентгеновских лучей применяются экраны из стального листа (1 мм), освинцованного алюминия (3 мм), покрытого оловом стекла (8 мм) или специальной резины (7.1).

Смотровые окна в рентгеновских установках выполняют из плексигласа (30 мм) или покрытого оловом стекла.

С целью предотвращения рассеивания рентгеновского излучения в производственном помещении, устраивают защитные ограждения из различных защитных материалов, например, свинца или бетона.

При кратковременных работах на рентгеновских установках в качестве средств индивидуальной защиты применяются фартуки, перчатки, шапочки, изготовленные из покрытой оловом резины.

Литература: , , , .

Вопросы для самоконтроля

1. В каких отраслях народного хозяйства используются ионизирующие излучения?

2. Какие три стадии хронической лучевой болезни Вы знаете?

3. Как оказывается влияние радиоактивных излучений на организм человека?

4. От каких факторов зависят поражения радиоактивными веществами?

5. Какая физическая суть единицы измерения ионизирующего излучения "зиверт"?

6. В чем физический смысл единицы "рентген"?

7. В каком документе установлены нормы радиационной безопасности?

9. Какие работники не допускаются к работе с источниками ионизирующего излучения?

10. Какие материалы применяют для защитных экранов?

11. Как транспортируют и хранят радиоактивные вещества?

12. Какой принцип защиты "расстоянием" и "время"?

13. Какие методы контроля применяются для измерения радиоактивных излучений?

14. Какие существуют приборы для измерения радиоактивных излучений?

15. Какие следует применять индивидуальные средства защиты от радиоактивных излучений?