Расстояние от точки до плоскости: определение и примеры нахождения. Расстояние от точки до плоскости. Подробная теория с примерами

Тип задания: 14

Условие

В правильной треугольной пирамиде DABC с основанием ABC сторона основания равна 6\sqrt{3}, а высота пирамиды равна 8 . На ребрах AB , AC и AD соответственно отмечены точки M , N и K , такие, что AM=AN=\frac{3\sqrt{3}}{2} и AK=\frac{5}{2}.

а) Докажите, что плоскости MNK и DBC параллельны.

б) Найдите расстояние от точки K до плоскости DBC .

Показать решение

Решение

а) Плоскости MNK и DBC параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Докажем это. Рассмотрим прямые MN и KM плоскости MNK и прямые BC и DB плоскости DBC.

В треугольнике AOD : \angle AOD = 90^\circ и по теореме Пифагора AD=\sqrt{DO^2 +AO^2}.

Найдём AO , используя то, что \bigtriangleup ABC правильный.

AO=\frac{2}{3}AO_1, где AO_1 — высота \bigtriangleup ABC, AO_1 = \frac{a\sqrt{3}}{2}, где a — сторона \bigtriangleup ABC.

AO_1 = \frac{6\sqrt{3} \cdot \sqrt{3}}{2}=9, тогда AO=6, AD=\sqrt{8^2 + 6^2}=10.

1. Так как \frac{AK}{AD}=\frac{5}{2} : 10=\frac{1}{4}, \frac{AM}{AB}=\frac{3\sqrt{3}}{2} : 6\sqrt{3}=\frac{1}{4} и \angle DAB — общий, то \bigtriangleup AKM \sim ADB.

Из подобия следует, что \angle AKM = \angle ADB. Это соответственные углы при прямых KM и BD и секущей AD . Значит KM \parallel BD.

2. Так как \frac{AN}{AC}=\frac{3 \sqrt{3}}{2 \cdot 6 \sqrt{3}}=\frac{1}{4}, \frac{AM}{AB}=\frac{1}{4} и \angle CAB — общий, то \bigtriangleup ANM \sim \bigtriangleup ACB.

Из подобия следует, что \angle ANM = \angle ACB. Эти углы соответственные при прямых MN и BC и секущей AC . Значит, MN \parallel BC.

Вывод: так как две пересекающиеся прямые KM и MN плоскости MNK соответственно параллельны двум пересекающимся прямым BD и BC плоскости DBC , то эти плоскости параллельны — MNK \parallel DBC.

б) Найдём расстояние от точки K до плоскости BDC .

Поскольку плоскость MNK параллельна плоскости DBC , то расстояние от точки K до плоскости DBC равно расстоянию от точки O_2 до плоскости DBC и оно равно длине отрезка O_2 H. Докажем это.

BC \perp AO_1 и BC \perp DO_1 (как высоты треугольников ABC и DBC ), значит, BC перпендикулярна плоскости ADO_1, и тогда BC перпендикулярна любой прямой этой плоскости, например, O_2 H. По построению O_2H\perp DO_1, значит, O_2H перпендикулярна двум пересекающимся прямым плоскости BCD , и тогда отрезок O_2 H перпендикулярен плоскости BCD и равен расстоянию от O_2 до плоскости BCD .

В треугольнике O_2HO_1:O_2H=O_{2}O_{1}\sin\angle HO_{1}O_{2}.

O_{2}O_{1}=AO_{1}-AO_{2}.\, \frac{AO_2}{AO_1}=\frac{1}{4}, AO_{2}=\frac{AO_1}{4}=\frac{9}{4}.

O_{2}O_{1}=9-\frac{9}{4}=\frac{27}{4}.

\sin \angle DO_{1}A= \frac{DO}{DO_{1}}= \frac{8}{\sqrt{64+3^2}}= \frac{8}{\sqrt{73}}.

O_2H=\frac{27}{4} \cdot \frac{8}{\sqrt{73}}=\frac{54}{\sqrt{73}}.

Ответ

\frac{54}{\sqrt{73}}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Расстояние от точки до плоскости

Условие

ABCDA_1B_1C_1D_1 — правильная четырехугольная призма.

а) Докажите, что плоскость BB_1D_1 \perp AD_1C .

б) Зная AB = 5 и AA_1 = 6 найдите расстояние от точки B_1 до плоскости AD_1C .

Показать решение

Решение

а) Так как данная призма правильная, то BB_1 \perp ABCD , отсюда BB_1 \perp AC . Поскольку ABCD — квадрат, то AC \perp BD . Таким образом, AC \perp BD и AC \perp BB_1 . Так как прямые BD и BB_1 пересекаются, то, согласно признаку перпендикулярности прямой и плоскости, AC \perp BB_1D_1D . Теперь по признаку перпендикулярности плоскостей AD_1C \perp BB_1D_1 .

б) Обозначим через О точку пересечения диагоналей AC и BD квадрата ABCD . Плоскости AD_1C и BB_1D_1 пересекаются по прямой OD_1 . Пусть B_1H — перпендикуляр, проведенный в плоскости BB_1D_1 к прямой OD_1 . Тогда B_1H \perp AD_1C . Пусть E=OD_1 \cap BB_1 . Для подобных треугольников D_1B_1E и OBE (равенство соответствующих углов следует из условия BO \parallel B_1D_1 ) имеем \frac {B_1E}{BE}=\frac{B_1D_1}{BO}=\frac{2}1 .

Значит, B_1E=2BE=2 \cdot 6=12. Так как B_1D_1=5\sqrt{2} , то гипотенуза D_1E= \sqrt{B_1E^{2}+B_1D_1^{2}}= \sqrt{12^{2}+(5\sqrt{2})^{2}}= \sqrt{194}. Далее применяем метод площадей в треугольнике D_1B_1E для вычисления высоты B_1H , опущенной на гипотенузу D_1E :

S_{D_1B_1E}=\frac1{2}B_1E \cdot B_1D_1=\frac1{2}D_1E \cdot B_1H; 12 \cdot 5\sqrt{2}=\sqrt{194} \cdot B_1H;

B_1H=\frac{60\sqrt{2}}{\sqrt{194}}=\frac{60}{\sqrt{97}}=\frac{60\sqrt{97}}{97} .

Ответ

\frac{60\sqrt{97}}{97}

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Расстояние от точки до плоскости

Условие

ABCDA_1B_1C_1D_1 — прямоугольный параллелепипед. Ребра AB=24, BC=7, BB_{1}=4 .

а) Докажите, что расстояние от точек B и D до плоскости ACD_{1} одинаковы.

б) Найдите это расстояние.

Показать решение

Решение

а) Рассмотрим треугольную пирамиду D_1ACD .

В данной пирамиде расстояние от точки D до плоскости основания ACD_1-DH — равно высоте пирамиды, проведенной из точки D , к основанию ACD_1 .

V_{D_1ABC}=\frac1{3}S_{ACD_1} \cdot DH , из этого равенства получаем

DH=\frac{3V_{D_1ACD}}{S_{ACD_1}} .

Рассмотрим пирамиду D_1ABC . Расстояние от точки B до плоскости ACD_1 равно высоте, опущенной из вершины B к основанию ACD_1 . Обозначим это расстояние BK . Тогда V_{D_1ABC}=\frac1{3}S_{ACD_1} \cdot BK , из этого получаем BK=\frac{3V_{D_1ABC}}{S_{ACD_1}}.\: Но V_{D_1ACD} = V_{D_1ABC} , так как, если считать в пирамидах основаниямиADC и ABC , то высота D_1D общая и S_{ADC}=S_{ABC} (\bigtriangleup ADC=\bigtriangleup ABC по двум катетам). Значит, BK=DH .

б) Найдем объем пирамиды D_1ACD .

Высота D_1D=4 .

S_{ACD}=\frac1{2}AD \cdot DC=\frac1{2} \cdot24 \cdot 7=84.

V=\frac1{3}S_{ACD} \cdot D_1D=\frac1{3} \cdot84 \cdot4=112 .

Площадь грани ACD_1 равна \frac1{2}AC \cdot D_1P.

AD_1= \sqrt{AD^{2}+DD_1^{2}}= \sqrt{7^{2}+4^{2}}= \sqrt{65}, \: AC= \sqrt{AB^{2}+BC^{2}}= \sqrt{24^{2}+7^{2}}= 25

Зная, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла, в треугольнике ADC имеем AD^{2}=AC \cdot AP, \: AP=\frac{AD^{2}}{AC}=\frac{7^{2}}{25}=\frac{49}{25}.

В прямоугольном треугольнике AD_1P по теореме Пифагора D_1P^{2}= AD_1^{2}-AP^{2}= 65-\left (\frac{49}{25} \right)^{2}= \frac{38\:224}{25^{2}}, D_1P=\frac{4\sqrt{2\:389}}{25}.

S_{ACD_1}=\frac1{2} \cdot25 \cdot\frac{4\sqrt{2\:389}}{25}=2\sqrt{2\:389} .

DH=\frac{3V}{S_{ACD_1}}=\frac{3 \cdot112}{2\sqrt{2\:389}}=\frac{168}{\sqrt{2\:389}} .

Калькулятор онлайн.
Вычисление расстояния от точки до плоскости

Этот калькулятор онлайн вычисляет расстояния от точки до плоскости заданной в виде общего уравнения плоскости:
$$ Ax+By+Cz+D=0 $$

Онлайн калькулятор для вычисления расстояния от точки до плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Наш онлайн калькулятор дает не только ответ задачи, но и отображает процесс решения по шагам. В результате вы сможете понять процесс решения задач на нахождение расстояния от точки до плоскости.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \(-\frac{2}{3} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \(-1\frac{5}{7} \)

x+ y+
z+ =0

M( ; ; )
Вычислить расстояние от точки до плоскости

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Пусть заданы прямоугольная система координат Oxyz и произвольная плоскость \(\pi \) (см. рисунок).

Проведем через начало координат прямую, перпендикулярную плоскости \(\pi \). Будем называть ее нормалью. Обозначим через Р точку, в которой нормаль пересекает плоскость \(\pi \). На нормали введем направление от точки О к точке Р. Если точки О и Р совпадают, то возьмем любое из двух направлений на нормали. Пусть \(\alpha, \; \beta, \; \gamma \) - углы, которые составляет направленная нормаль с осями координат; p - длина отрезка OP.

Выведем уравнение данной плоскости \(\pi \), считая известными числа \(\cos\alpha, \; \cos\beta, \; \cos\gamma \) и р. Для этого введем единичный вектор n на нормали, направление которого совпадает с положительным направлением нормали. Так как n - единичный вектор, то
\(\begin{array}{lr} \vec{n} = (\cos\alpha; \;\; \cos\beta; \;\; \cos\gamma) & \qquad\qquad (5) \end{array} \)

Пусть М (x; y; z) - произвольная точка. Она лежит на плоскости \(\pi \) тогда и только тогда, когда проекция вектора OM на нормаль равна p, т.е.
$$ \begin{array}{lr} Пр_{\vec{n}} \overrightarrow{OM} = p & (6) \end{array} $$

Заметим теперь, что \(Пр_{\vec{n}} \overrightarrow{OM} = \vec{n} \cdot \overrightarrow{OM} \) и \(\vec{OM} = (x;\; y; \; z) \) Тогда, учитывая равенство (5)

$$ \begin{array}{lr} Пр_{\vec{n}} \overrightarrow{OM} = \vec{n} \cdot \overrightarrow{OM} = x \cos \alpha + y \cos\beta + z \cos\gamma & (7) \end{array} $$

Из равенств (6) и (7) получаем, что точка М(х; у; z) лежит на плоскости \(\pi \) тогда и только тогда, когда ее координаты удовлетворяют уравнению

\(\begin{array}{lr} x \cos \alpha + y \cos\beta + z \cos\gamma - p = 0 & \qquad\qquad (8) \end{array} \) которое и является искомым уравнением данной плоскости. Уравнение плоскости в виде (8) называется нормальным уравнением плоскости .

Теорема
Если точка М* имеет координаты х*, у*, z*, и плоскость задана нормальным уравнением

\(x \cos \alpha + y \cos\beta + z \cos\gamma - p = 0 \) то расстояние d от точки М* до этой плоскости определяется по формуле
\(d = |x^* \cos \alpha + y^* \cos\beta + z^* \cos\gamma - p | \)

Покажем теперь, как привести общее уравнение плоскости к нормальному виду. Пусть
\(\begin{array}{lr} Ax+By+Cz+D=0 & \qquad\qquad (11) \end{array} \)
- общее уравнение некоторой плоскости, а
\(\begin{array}{lr} x \cos \alpha + y \cos\beta + z \cos\gamma - p = 0 & \qquad\qquad (12) \end{array} \)
- ее нормальное уравнение. Так как уравнения (11) и (12) определяют одну и ту же плоскость, то по теореме коэффициенты этих уравнений пропорциональны. Это означает, что умножая все члены (11) на некоторый множитель \(\mu \), получаем уравнение
\(\mu Ax + \mu By + \mu Cz + \mu D=0 \)
совпадающее с уравнением (12), т.е. имеем
\(\begin{array}{lr} \mu A = \cos \alpha, \;\; \mu B = \cos\beta, \;\; \mu C = \cos\gamma, \;\; \mu D = -p & \qquad\qquad (13) \end{array} \)

Чтобы найти множитель \(\mu \), возведем первые три из равенств (13) в квадрат и сложим; тогда получим
\(\mu^2(A^2+B^2+C^2) = \cos ^2 \alpha + \cos^2 \beta + \cos ^2\gamma \)
Но правая часть последнего равенства равна единице. Следовательно,
$$ \mu = \pm \frac{1}{ \sqrt{A^2+B^2+C^2}} $$

Число \(\mu \), с помощью которого общее уравнение плоскости преобразуется в нормальное, называется нормирующим множителем этого уравнения. Знак \(\mu \) определяется равенством \(\mu D = -p \), т.е. \(\mu \) имеет знак, противоположный знаку свободного члена общего уравнения (11).

Если в уравнении (11) D=0, то знак нормирующего множителя выбирается произвольно.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн

Инструкция

Для нахождения расстояния от точки до плоскости методами начертательной : выберите на плоскости произвольную точку; проведите через нее две прямые (лежащие в этой плоскости ); восстановите перпендикуляр к плоскости , проходящий через эту точку (постройте прямую, перпендикулярную одновременно обеим пересекающимся прямым); проведите через заданную точку прямую параллельную, построенному перпендикуляру; найдите расстояние между точкой пересечения этой прямой с плоскостью и заданной точкой.

Если положение точки задано ее трехмерными координатами, а положение плоскости – линейным уравнением, то, чтобы найти расстояние от плоскости до точки , воспользуйтесь методами аналитической геометрии: обозначьте координаты точки через x, y, z, соответственно (х – абсцисса, y – ордината, z – аппликата); обозначьте через А, В, С, D уравнения плоскости (А – параметр при абсциссе, В – при , С – при аппликате, D – свободный член); вычислите расстояние от точки до плоскости по формуле:s = | (Ax+By+Cz+D)/√(A²+B²+C²) |,где s – оасстояние между точкой и плоскостью,|| - абсолютного значения (или модуля) .

Пример.Найдите расстояние между точкой А с координатами (2, 3, -1) и плоскостью, заданной уравнением: 7х-6у-6z+20=0.Решение.Из условий следует, что:х=2,у=3,z=-1,A=7,B=-6,C=-6,D=20.Подставьте эти значения в вышеприведенную .Получится:s = | (7*2+(-6)*3+(-6)*(-1)+20)/√(7²+(-6)²+(-6)²) | = | (14-18+6+20)/11 | = 2.Ответ:Расстояние от точки до плоскости равно 2 (условным единицам).

Совет 2: Как определить расстояние от точки до плоскости

Определение расстояния от точки до плоскости - одна из распространенных задач школьной планиметрии. Как известно, наименьшим расстоянием от точки до плоскости будет перпендикуляр, проведенный из этой точки к данной плоскости . Поэтому длина этого перпендикуляра и принимается за расстояние от точки до плоскости .

Вам понадобится

  • уравнение плоскости

Инструкция

Пусть первая из параллельных f1 задана уравнением y=kx+b1. Переведя выражение в общий вид, у вас получится kx-y+b1=0, то есть A=k, B=-1. Нормалью к ней будет n={k, -1}.
Теперь следует произвольную абсциссу точки х1 на f1. Тогда ее ордината y1=kx1+b1.
Пусть уравнение второй из параллельных прямых f2 будет иметь вид:
у=kx+b2 (1),
где k одинаково для обеих прямых, в силу их параллельности.

Далее вам необходимо составить каноническое уравнение линии перпендикулярной как f2, так и f1, содержащей точку М (x1, y1). При этом полагают, что х0=х1, y0=y1, S={k, -1}. В результате у вас должно получится следующее равенство:
(x-x1)/k =(y-kx1-b1)/(-1) (2).

Решив систему уравнений, состоящую из выражений (1) и (2), вы найдете вторую точку, определяющую искомое расстояние между параллельными N(x2, y2). Само искомое расстояние будет равно d=|MN|=((x2-x1)^2+(y2-y1)^2)^1/2.

Пример. Пусть уравнения заданных параллельных прямых на плоскости f1 – у=2x +1 (1);
f2 – y=2x+5 (2). Берем произвольную точку х1=1 на f1. Тогда y1=3. Первая точка, таким образом будет иметь координаты M (1,3). Уравнение общего перпендикуляра (3):
(х-1)/2 = -y+3 или y=-(1/2)x+5/2.
Подставив это значение y в (1), получить:
-(1/2)x+5/2=2х+5, (5/2)х=-5/2, х2=-1, y2=-(1/2)(-1) +5/2=3.
Второе основание перпендикуляра в точке с координатами N (-1, 3). Расстояние между параллельными прямыми составит:
d=|MN|=((3-1)^2+(3+1)^2)^1/2=(4+16)^1/2=4,47.

Источники:

  • Развитие легкой атлетики в России

Вершина любой плоской или объемной геометрической фигуры однозначно определяется своими координатами в пространстве. Точно так же может быть однозначно определена и любая произвольная точка в той же системе координат, а это дает возможность вычислить расстояние между этой произвольной точкой и вершиной фигуры.

Вам понадобится

  • - бумага;
  • - ручка или карандаш;
  • - калькулятор.

Инструкция

Сведите задачу к нахождению длины отрезка между двумя точками, если координаты заданной в задачи точки и вершины геометрической фигуры известны. Эту длину можно вычислить, воспользовавшись теоремой Пифагора применительно к проекциям отрезка на оси координат - она будет равна квадратному корню из суммы квадратов длин всех проекций. Например, пусть в трехмерной системе координат заданы точка A(X₁;Y₁;Z₁) и вершина C фигуры любой геометрической с координатами (X₂;Y₂;Z₂). Тогда длины проекций отрезка между ними на координатные оси можно как X₁-X₂, Y₁-Y₂ и Z₁-Z₂, а длину отрезка - как √((X₁-X₂)²+(Y₁-Y₂)²+(Z₁-Z₂)²). Например, если координаты точки A(5;9;1), а вершины C(7;8;10), то расстояние между ними будет равно √((5-7)²+(9-8)²+(1-10)²) = √(-2²+1²+(-9)²) = √(4+1+81) = √86 ≈ 9,274.

Вычислите сначала координаты вершины, если в явном виде в условиях задачи они не представлены. Конкретный способ зависит от типа фигуры и известных дополнительных параметров. Например, если известны трехмерные координаты трех вершин A(X₁;Y₁;Z₁), B(X₂;Y₂;Z₂) и C(X₃;Y₃;Z₃), то координаты четвертой его вершины (противоположной вершине B) будут (X₃+X₂-X₁; Y₃+Y₂-Y₁; Z₃+Z₂-Z₁). После определения координат недостающей вершины вычисление расстояния между ней и произвольной точкой вновь сведется к определению длины отрезка между двумя этими точками в заданной системе координат - сделайте это тем же способом, который был описан в предыдущем шаге. Например, для вершины описанного в этом шаге параллелограмма и точки E с координатами (X₄;Y₄;Z₄) формулу вычисления расстояния из предыдущего шага можно так: √((X₃+X₂-X₁-X₄)²+(Y₃+Y₂-Y₁-Y₄)²+(Z₃+Z₂-Z₁-Z₄)²).

Для практических расчетов можно использовать, например, встроенный в поисковую систему Google . Так, чтобы вычислить значение по формуле, полученной на предыдущем шаге, для точек с координатами A(7;5;2), B(4;11;3), C(15;2;0), E(7;9;2), введите такой поисковый запрос: sqrt((15+4-7-7)^2+(2+11-5-9)^2+(0+3-2-2)^2). Поисковик рассчитает и отобразит результат вычислений (5,19615242).

Видео по теме

Восстановление перпендикуляра к плоскости – одна из важных задач в геометрии, она лежит в основе многих теорем и доказательств. Чтобы построить прямую, перпендикулярную плоскости , нужно последовательно выполнить несколько действий.

Вам понадобится

  • - заданная плоскость;
  • - точка, из которой требуется провести перпендикуляр;
  • - циркуль;
  • - линейка;
  • - карандаш.