Сила изменяется со временем как найти импульс. Импульс тела. Импульс силы

В повседневной жизни для того, чтобы охарактеризовать человека, совершающего спонтанные поступки, иногда используют эпитет «импульсивный». При этом некоторые люди даже не помнят, а значительная часть и вовсе не знает, с какой физической величиной связано это слово. Что скрывается под понятием «импульс тела» и какими свойствами он обладает? Ответы на эти вопросы искали такие великие ученые, как Рене Декарт и Исаак Ньютон.

Как и всякая наука, физика оперирует четко сформулированными понятиями. На данный момент принято следующее определение для величины, носящей название импульса тела: это векторная величина, которая является мерой (количеством) механического движения тела.

Предположим, что вопрос рассматривается в рамках классической механики, т. е. считается, что тело движется с обычной, а не с релятивистской скоростью, а значит, она хотя бы на порядок меньше скорости света в вакууме. Тогда модуль импульса тела рассчитывается по формуле 1 (см. фото ниже).

Таким образом, по определению, эта величина равна произведению массы тела на его скорость, с которой сонаправлен ее вектор.

В качестве единицы измерения импульса в СИ (Международной системе единиц) принимается 1 кг/м/с.

Откуда появился термин «импульс»

За несколько веков до того, как в физике появилось понятие количества механического движения тела, считалось, что причиной любого перемещения в пространстве является особая сила — импетус.

В 14 веке в это понятие внес коррективы Жан Буридан. Он предположил, что летящий булыжник обладает импетусом, прямо пропорциональным скорости, который был бы неизменным, если бы отсутствовало сопротивления воздуха. В то же время, по мнению этого философа, тела с большим весом обладали способностью «вмещать» больше такой движущей силы.

Дальнейшее развитие понятию, позднее названного импульсом, дал Рене Декарт, который обозначил его словами «количество движения». Однако он не учитывал, что скорость имеет направление. Именно поэтому выдвинутая им теория в некоторых случаях противоречила опыту и не нашла признания.

О том, что количество движения должно иметь еще и направление, первым догадался английский ученый Джон Валлис. Произошло это в 1668 году. Однако понадобилась еще пара лет, чтобы он сформулировал известный закон сохранения количества движения. Теоретическое доказательство этого факта, установленного эмпирическим путем, было дано Исааком Ньютоном, который использовал открытые им же третий и второй законы классической механики, названные его именем.

Импульс системы материальных точек

Рассмотрим сначала случай, когда речь идет о скоростях, намного меньших, чем скорость света. Тогда, согласно законам классической механики, полный импульс системы материальных точек представляет векторную величину. Он равен сумме произведений их масс на скорости (см. формулу 2 на картинке выше).

При этом за импульс одной материальной точки принимают векторную величину (формула 3), которая сонаправлена со скоростью частицы.

Если речь идет о теле конечного размера, то сначала его мысленно разбивают на малые части. Таким образом, снова рассматривается система материальных точек, однако ее импульс рассчитывают не обычным суммированием, а путем интегрирования (см. формулу 4).

Как видим, временная зависимость отсутствует, поэтому импульс системы, на которую не воздействуют внешние силы (или их влияние взаимно компенсировано), остается неизменным во времени.

Доказательство закона сохранения

Продолжим рассматривать тело конечного размера как систему материальных точек. Для каждой из них Второй закон Ньютона формулируется согласно формуле 5.

Обратим внимание на то, что система замкнутая. Тогда, суммируя по всем точкам и применяя Третий закон Ньютона, получаем выражение 6.

Таким образом, импульс замкнутой системы является постоянной величиной.

Закон сохранения справедлив и в тех случаях, когда полная сумма сил, которые действуют на на систему извне, равна нулю. Отсюда следует одно важное частное утверждение. Оно гласит, что импульс тела является постоянной величиной, если воздействие извне отсутствует или влияние нескольких сил скомпенсировано. Например, в отсутствие трения после удара клюшкой шайба должна сохранять свой импульс. Такая ситуация будет наблюдаться даже невзирая на то, что на это тело действуют сила тяжести и реакции опоры (льда), так как они, хотя и равны по модулю, однако направлены в противоположные стороны, т. е. компенсируют друг друга.

Свойства

Импульс тела или материальной точки является аддитивной величиной. Что это значит? Все просто: импульс механической системы материальных точек складывается из импульсов всех входящих в систему материальных точек.

Второе свойство этой величины заключается в том, что она остается неизменной при взаимодействиях, которые изменяют лишь механические характеристики системы.

Кроме того, импульс инвариантен по отношению к любому повороту системы отсчета.

Релятивистский случай

Предположим, что речь идет о невзаимодействующих материальных точках, имеющих скорости порядка 10 в 8-й степени или чуть меньше в системе СИ. Трехмерный импульс рассчитывается по формуле 7, где под с понимают скорость света вакууме.

В случае, когда она замкнутая, верен закон сохранения количества движения. В то же время трехмерный импульс не является релятивистски инвариантной величиной, так как присутствует его зависимость от системы отсчета. Есть также четырехмерный вариант. Для одной материальной точки его определяют по формуле 8.

Импульс и энергия

Эти величины, а также масса тесно связаны друг с другом. В практических задачах обычно применяются соотношения (9) и (10).

Определение через волны де Бройля

В 1924 году была высказана гипотеза о том, что корпускулярно-волновым дуализмом обладают не только фотоны, но и любые другие частицы (протоны, электроны, атомы). Ее автором стал французский ученый Луи де Бройль. Если перевести эту гипотезу на язык математики, то можно утверждать, что с любой частицей, имеющей энергию и импульс, связана волна с частотой и длиной, выражаемыми формулами 11 и 12 соответственно (h — постоянная Планка).

Из последнего соотношения получаем, что модуль импульса и длина волны, обозначаемая буквой «лямбда», обратно пропорциональны друг другу (13).

Если рассматривается частица со сравнительно невысокой энергией, которая движется со скоростью, несоизмеримой со скоростью света, то модуль импульса вычисляется так же, как в классической механике (см. формулу 1). Следовательно, длина волны рассчитывается согласно выражению 14. Иными словами, она обратно пропорциональна произведению массы и скорости частицы, т. е. ее импульсу.

Теперь вы знаете, что импульс тела — это мера механического движения, и познакомились с его свойствами. Среди них в практическом плане особенно важен Закон сохранения. Даже люди, далекие от физики, наблюдают его в повседневной жизни. Например, всем известно, что огнестрельное оружие и артиллерийские орудия дают отдачу при стрельбе. Закон сохранения импульса наглядно демонстрирует и игра в бильярд. С его помощью можно предсказать направления разлета шаров после удара.

Закон нашел применение при расчетах, необходимых для изучения последствий возможных взрывов, в области создания реактивных аппаратов, при проектировании огнестрельного оружия и во многих других сферах жизни.

Проделаем несколько несложных преобразований с формулами. По второму закону Ньютона силу можно найти: F=m*a. Ускорение находится следующим образом: a=v⁄t . Таким образом получаем: F=m*v /t.

Определение импульса тела: формула

Выходит, что сила характеризуется изменением произведения массы на скорость во времени. Если обозначить это произведение некой величиной, то мы получим изменение этой величины во времени как характеристику силы. Эту величину назвали импульсом тела. Импульс тела выражается формулой:

где p импульс тела, m масса, v скорость.

Импульс это векторная величина, при этом его направление всегда совпадает с направлением скорости. Единицей импульса является килограмм на метр в секунду (1 кг*м/с).

Что же такое импульс тела: как понять?

Попробуем по-простому, «на пальцах» разобраться, что такое импульс тела. Если тело покоится, то его импульс равен нулю. Логично. Если скорость тела изменяется, то у тела появляется некий импульс, который характеризует величину приложенной к нему силы.

Если воздействие на тело отсутствует, но оно движется с некоторой скоростью, то есть имеет некий импульс, то его импульс означает, какое воздействие способно оказать данное тело при взаимодействии с другим телом.

В формулу импульса входит масса тела и его скорость. То есть чем большей массой и/или скоростью обладает тело, тем большее воздействие оно может оказать. Это понятно и из жизненного опыта.

Чтобы сдвинуть тело небольшой массы, нужна небольшая сила. Чем больше масса тела, тем большее придется приложить усилие. То же самое касается и скорости, которую сообщают телу. В случае же воздействия самого тела на другое, импульс также показывает величину, с которой тело способно действовать на другие тела. Эта величина напрямую зависит от скорости и массы исходного тела.

Импульс при взаимодействии тел

Возникает еще один вопрос: что произойдет с импульсом тела при его взаимодействии с другим телом? Масса тела измениться не может, если оно остается целым, а вот скорость может измениться запросто. При этом скорость тела изменится в зависимости от его массы.

В самом деле, понятно, что при столкновении тел с очень разными массами, скорость их изменится по-разному. Если летящий на большой скорости футбольный мяч врежется в неготового к этому человека, например зрителя, то зритель может упасть, то есть приобретет некоторую небольшую скорость, но точно не полетит как мячик.

А все потому, что масса зрителя намного больше массы мяча. Но при этом сохранится неизменным общий импульс этих двух тел.

Закон сохранения импульса: формула

В этом и заключается закон сохранения импульса: при взаимодействии двух тел их общий импульс остается неизменным. Закон сохранения импульса действует только в замкнутой системе, то есть в такой системе, в которой нет воздействия внешних сил или их суммарное действие равно нулю.

В реальности практически всегда на систему тел оказывается стороннее воздействие, но общий импульс, как и энергия, не пропадает в никуда и не возникает из ниоткуда, он распределяется между всеми участниками взаимодействия.

Импульс силы и импульс тела

Как было показано, второй закон Ньютона может быть записан в виде

Ft=mv-mv o =p-p o =D p.

Векторную величину Ft, равную произведению силы на время ее действия, называют импульсом силы . Векторную величину р=mv, равную произведению массы тела на его скорость, называют импульсом тела .

В СИ за единицу импульса принят импульс тела массой 1 кг, движущегося со скоростью 1 м/с, т.е. единицей импульса является килограммметр в секунду (1 кг·м/с).

Изменение импульса тела D p за время t равно импульсу силы Ft, действующей на тело в течение этого времени.

Понятие импульса является одним из фундаментальных понятий физики. Импульс тела является одной из величин, способных при определенных условиях сохранять свое значение неизменным (но модулю, и по направлению).

Сохранение полного импульса замкнутой системы

Замкнутой системой называют группу тел, не взаимодействующих ни с какими другими телами, которые не входят в состав этой группы. Силы взаимодействия между телами, входящими в замкнутую систему, называют внутренними . (Внутренние силы обычно обозначают буквой f).

Рассмотрим взаимодействие тел внутри замкнутой системы. Пусть два шара одинакового диаметра, изготовленные из разных веществ (т. е. имеющие разные массы), катятся по идеально гладкой горизонтальной поверхности и сталкиваются друг с другом. При ударе, который мы будем считать центральным и абсолютно упругим, изменяются скорости и импульсы шаров. Пусть масса первого шара m 1 , его скорость до удара V 1 , а после удара V 1 "; масса второго шара m 2 , его скорость до удара v 2 , после удара v 2 ". Согласно третьему закону Ньютона, силы взаимодействия между шарами равны по модулю и противоположны по направлению, т.е. f 1 =-f 2 .

Согласно второму закону Ньютона, изменение импульсов шаров в результате их соударения равно импульсам сил взаимодействия между ними, т. е.

m 1 v 1 "-m 1 v 1 =f 1 t (3.1)

m 2 v 2 "-m 2 v 2 =f 2 t (3.2)

где t - время взаимодействия шаров.
Почленно сложив выражения (3.1) и (3.2), найдем, что

m 1 v 1 "-m 1 v 1 +m 2 v 2 "-m 2 v 2 =0.

Следовательно,

m 1 v 1 "+m 2 v 2 "=m 1 v 1 +m 2 v 2

или иначе

p 1 "+p 2 "=p 1 +p 2 . (3.3)

Обозначим р 1 "+р 2 "=р" и р 1 +р 2 =p.
Векторную сумму импульсов всех тел, входящих в систему, называют полным импульсом этой системы . Из (3.3) видно, что р"=р, т.е. р"-р=D р=0, следовательно,

p=p 1 +p 2 =const.

Формула (3.4) выражает закон сохранения импульса в замкнутой системе , который формулируют так: полный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел этой системы между собой.
Иными словами, внутренние силы не могут изменить полного импульса системы ни по модулю, ни по направлению.

Изменение полного импульса незамкнутой системы

Группу тел, взаимодействующих не только между собой, но и с телами, не входящими в состав этой группы, называют незамкнутой системой . Силы, с которыми на тела данной системы действуют тела, не входящие в эту систему, называют внешними (обычно внешние силы обозначают буквой F).

Рассмотрим взаимодействие двух тел в незамкнутой системе. Изменение импульсов данных тел происходит как под действием внутренних сил, так и под действием внешних сил.

Согласно второму закону Ньютона, изменения импульсов рассматриваемых тел у первого и второго тел составляют

D р 1 =f 1 t+F 1 t (3.5)

D р 2 =f 2 t+F 2 t (3.6)

где t - время действия внешних и внутренних сил.
Почленно сложив выражения (3.5) и (3.6), найдем, что

D (p 1 +p 2)=(f 1 +f 2)t +(F 1 +F 2)t (3.7)

В этой формуле р=р 1 +р 2 - полный импульс системы, f 1 +f 2 =0 (так как по третьему закону Ньютона (f 1 =-f 2), F 1 +F 2 =F - равнодействующая всех внешних сил, действующих на тела данной системы. С учетом сказанного формула (3.7) принимает вид

D р=Ft. (3.8)

Из (3.8) видно, что полный импульс системы изменяется только под действием внешних сил. Если же система замкнутая, т. е. F=0, то D р=0 и, следовательно, р=const. Таким образом, формула (3.4) является частным случаем формулы (3.8), которая показывает, при каких условиях полный импульс системы сохраняется, а при каких - изменяется.

Реактивное движение.
Значение работ Циолковского для космонавтики

Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным .

Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противо-положную сторону. Действительно, так как m 1 v 1 +m 2 v 2 =0, то m 1 v 1 =-m 2 v 2 , т. е.

v 2 =-v 1 m 1 /m 2 .

Из этой формулы следует, что скорость v 2 , получаемая системой с массой m 2 , зависит от выброшенной массы m 1 и скорости v 1 ее выбрасывания.

Тепловой двигатель, в котором сила тяги, возникающая за счет реакции струи вылетающих раскаленных газов, приложена непосредственно к его корпусу, называют реактивным. В отличие от других транспортных средств устройство с реактивным двигателем может двигаться в космическом пространстве.

Основоположником теории космических полетов является выдающийся русский ученый Циолковский (1857 - 1935). Он дал общие основы теории реактивного движения, разработал основные принципы и схемы реактивных летательных аппаратов, доказал необходимость использования многоступенчатой ракеты для межпланетных полетов. Идеи Циолковского успешно осуществлены в СССР при постройке искусственных спутников Земли и космических кораблей.

Основоположником практической космонавтики является советский ученый академик Королев (1906 - 1966). Под его руководством был создан и запущен первый в мире искусственный спутник Земли, состоялся первый в истории человечества полет человека в космос. Первым космонавтом Земли стал советский человек Ю.А. Гагарин (1934 - 1968).

Вопросы для самоконтроля:

  • Как записывают второй закон Ньютона в импульсной форме?
  • Что называют импульсом силы? импульсом тела?
  • Какую систему тел называют замкнутой?
  • Какие силы называют внутренними?
  • На примере взаимодействия двух тел в замкнутой системе покажите, как устанавливают закон сохранения импульса. Как его формулируют?
  • Что называют полным импульсом системы?
  • Могут ли внутренние силы изменить полный импульс системы?
  • Какую систему тел называют незамкнутой?
  • Какие силы называют внешними?
  • Установите формулу, показывающую, при каких условиях полный импульс системы изменяется, а при каких - сохраняется.
  • Какое движение называют реактивным?
  • Может ли оно происходить без взаимодействия движущегося тела с окружающей средой?
  • На каком законе основано реактивное движение?
  • Каково значение работ Циолковского для космонавтики?

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.


Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.


Изменение импульса тела

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры , сила тяжести .

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Вывод второго закона Ньютона в общем виде

График F(t). Переменная сила

Импульс силы численно равен площади фигуры под графиком F(t).


Если же сила непостоянная во времени, например линейно увеличивается F=kt , то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила

ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Тестирование онлайн

Замкнутая система тел

Это система тел, которые взаимодействуют только друг с другом. Нет внешних сил взаимодействия.

В реальном мире такой системы не может быть, нет возможности убрать всякое внешнее взаимодействие. Замкнутая система тел - это физическая модель, как и материальная точка является моделью. Это модель системы тел, которые якобы взаимодействуют только друг с другом, внешние силы не берутся во внимание, ими пренебрегают.

Закон сохранения импульса

В замкнутой системе тел векторная сумма импульсов тел не изменяется при взаимодействии тел. Если импульс одного тела увеличился, то это означает, что у какого-то другого тела (или нескольких тел) в этот момент импульс уменьшился ровно на такую же величину.

Рассмотрим такой пример. Девочка и мальчик катаются на коньках. Замкнутая система тел - девочка и мальчик (трением и другими внешними силами пренебрегаем). Девочка стоит на месте, ее импульс равен нулю, так как скорость нулевая (см. формулу импульса тела). После того как мальчик, движущийся с некоторой скоростью, столкнется с девочкой, она тоже начнет двигаться. Теперь ее тело обладает импульсом. Численное значение импульса девочки ровно такое же, на сколько уменьшился после столкновения импульс мальчика.

Одно тело массой 20кг движется со скоростью , второе тело массой 4кг движется в том же направлении со скоростью . Чему равны импульсы каждого тела. Чему равен импульс системы?


Импульс системы тел - это векторная сумма импульсов всех тел, входящих в систему. В нашем примере, это сумма двух векторов (так как рассматриваются два тела), которые направлены в одну сторону, поэтому

Сейчас вычислим импульс системы тел из предыдущего примера, если второе тело двигается в обратном направлении.


Так как тела двигаются в противоположных направлениях, получаем векторную сумму импульсов разнонаправленных. Подробнее о сумме векторов .

Главное запомнить

1) Что такое замкнутая система тел;
2) Закон сохранения импульса и его применение

Импульс силы. Импульс тела

Основные динамические величины: сила, масса, импульс тела, момент силы, момент импульса.

Сила – это век­тор­ная ве­ли­чи­на, яв­ля­ю­ща­я­ся мерой дей­ствия на дан­ное тело дру­гих тел или полей.

Сила ха­рак­те­ри­зу­ет­ся:

· Мо­ду­лем

· На­прав­ле­ни­ем

· Точ­кой при­ло­же­ния

В си­сте­ме СИ сила из­ме­ря­ет­ся в нью­то­нах.

Для того чтобы по­нять, что такое сила в один нью­тон, нам нужно вспом­нить, что сила, при­ло­жен­ная к телу, из­ме­ня­ет его ско­рость. Кроме того, вспом­ним о инерт­но­сти тел, ко­то­рая, как мы пом­ним, свя­за­на с их мас­сой. Итак,

Один нью­тон – это такая сила, ко­то­рая ме­ня­ет ско­рость тела мас­сой в 1 кг на 1 м/с за каж­дую се­кун­ду.

При­ме­ра­ми сил могут слу­жить:

· Сила тя­же­сти – сила, дей­ству­ю­щая на тело в ре­зуль­та­те гра­ви­та­ци­он­но­го вза­и­мо­дей­ствия.

· Сила упру­го­сти – сила, с ко­то­рой тело со­про­тив­ля­ет­ся внеш­ней на­груз­ке. Ее при­чи­ной яв­ля­ет­ся элек­тро­маг­нит­ное вза­и­мо­дей­ствие мо­ле­кул тела.

· Сила Ар­хи­ме­да – сила, свя­зан­ная с тем, что тело вы­тес­ня­ет некий объем жид­ко­сти или газа.

· Сила ре­ак­ции опоры – сила, с ко­то­рой опора дей­ству­ет на тело, на­хо­дя­ще­е­ся на ней.

· Сила тре­ния – сила со­про­тив­ле­ния от­но­си­тель­но­му пе­ре­ме­ще­нию кон­так­ти­ру­ю­щих по­верх­но­стей тел.

· Сила по­верх­ност­но­го на­тя­же­ния – сила, воз­ни­ка­ю­щая на гра­ни­це раз­де­ла двух сред.

· Вес тела – сила, с ко­то­рой тело дей­ству­ет на го­ри­зон­таль­ную опору или вер­ти­каль­ный под­вес.

И дру­гие силы.

Сила из­ме­ря­ет­ся с по­мо­щью спе­ци­аль­но­го при­бо­ра. Этот при­бор на­зы­ва­ет­ся ди­на­мо­мет­ром (рис. 1). Ди­на­мо­метр со­сто­ит из пру­жи­ны 1, рас­тя­же­ние ко­то­рой и по­ка­зы­ва­ет нам силу, стрел­ки 2, сколь­зя­щей по шкале 3, план­ки-огра­ни­чи­те­ля 4, ко­то­рая не дает рас­тя­нуть­ся пру­жине слиш­ком силь­но, и крюч­ка 5, к ко­то­ро­му под­ве­ши­ва­ет­ся груз.

Рис. 1. Ди­на­мо­метр (Ис­точ­ник)

На тело могут дей­ство­вать мно­гие силы. Для того чтобы пра­виль­но опи­сать дви­же­ние тела, удоб­но поль­зо­вать­ся по­ня­ти­ем рав­но­дей­ству­ю­щей сил.

Рав­но­дей­ству­ю­щая сил – это сила, дей­ствие ко­то­рой за­ме­ня­ет дей­ствие всех сил, при­ло­жен­ных к телу (Рис. 2).

Зная пра­ви­ла ра­бо­ты с век­тор­ны­ми ве­ли­чи­на­ми, легко до­га­дать­ся, что рав­но­дей­ству­ю­щая всех сил, при­ло­жен­ных к телу – это век­тор­ная сумма этих сил.

Рис. 2. Рав­но­дей­ству­ю­щая двух сил, дей­ству­ю­щих на тело

Кроме того, по­сколь­ку мы с вами рас­смат­ри­ва­ем дви­же­ние тела в ка­кой-ли­бо си­сте­ме ко­ор­ди­нат, нам обыч­но вы­год­но рас­смат­ри­вать не саму силу, а ее про­ек­цию на ось. Про­ек­ция силы на ось может быть от­ри­ца­тель­ной или по­ло­жи­тель­ной, по­то­му что про­ек­ция – это ве­ли­чи­на ска­ляр­ная. Так, на ри­сун­ке 3 изоб­ра­же­ны про­ек­ции сил, про­ек­ция силы – от­ри­ца­тель­на, а про­ек­ция силы – по­ло­жи­тель­на.

Рис. 3. Про­ек­ции сил на ось

Итак, из этого урока мы с вами углу­би­ли свое по­ни­ма­ние по­ня­тия силы. Мы вспом­ни­ли еди­ни­цы из­ме­ре­ния силы и при­бор, с по­мо­щью ко­то­ро­го из­ме­ря­ет­ся сила. Кроме того, мы рас­смот­ре­ли, какие силы су­ще­ству­ют в при­ро­де. На­ко­нец, мы узна­ли, как можно дей­ство­вать в слу­чае, если на тело дей­ству­ет несколь­ко сил.

Масса , физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Соответственно различают Массу инертную и Массу гравитационную (тяжелую, тяготеющую).

Понятие Масса было введено в механику И. Ньютоном. В классической механике Ньютона Масса входит в определение импульса (количества движения) тела: импульс р пропорционален скорости движения тела v , p = mv (1). Коэффициент пропорциональности - постоянная для данного тела величина m - и есть Масса тела. Эквивалентное определение Массы получается из уравнения движения классической механики f = ma (2). Здесь Масса - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) Масса называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше Масса тела, тем меньшее ускорение оно приобретает, т. е. тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения Масса этих тел: m 1: m 2: m 3 ... = а 1: а 2: а 3 ... ; если одну из Масс принять за единицу измерения, можно найти Массу остальных тел.

В теории гравитации Ньютона Масса выступает в другой форме - как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное Массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна Массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона:

(3)

где r - расстояние между телами, G - универсальная гравитационная постоянная, a m 1 и m 2 - Массы притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4).

Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли, а r » R - радиусу Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что Масса, создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная Масса и гравитационная Масса пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г.Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А.Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности. Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной Масс была произведена Л.Этвешем, который нашел, что Массы совпадают с ошибкой ~ 10 -8 . В 1959-64 годах американские физики Р.Дикке, Р.Кротков и П.Ролл уменьшили ошибку до 10 -11 , а в 1971 году советские физики В.Б.Брагинский и В.И.Панов - до 10 -12 .



Принцип эквивалентности позволяет наиболее естественно определять Массу тела взвешиванием.

Первоначально Масса рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчеркивает аддитивность Массы - Масса тела равна сумме Массы его частей. Масса однородного тела пропорциональна его объему, поэтому можно ввести понятие плотности - Массы единицы объема тела.

В классической физике считалось, что Масса тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения Массы (вещества), открытый М.В.Ломоносовым и А.Л.Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма Масс исходных компонентов равна сумме Масс конечных компонентов.

Понятие Масса приобрело более глубокий смысл в механике специальной теории относительности А. Эйнштейна, рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ~ 3 10 10 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы дается соотношением:

(5)

При малых скоростях (v << c ) это соотношение переходит в Ньютоново соотношение р = mv . Поэтому величину m 0 называют массой покоя, а Массу движущейся частицы m определяют как зависящий от скорости коэффициент пропорциональности между p и v :

(6)

Имея в виду, в частности, эту формулу, говорят, что Масса частицы (тела) растет с увеличением ее скорости. Такое релятивистское возрастание Массы частицы по мере повышения ее скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. Масса покоя m 0 (Масса в системе отсчета, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определенными значениями m 0 , присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение Массы из уравнения движения (2) не эквивалентно определению Массы как коэффициента пропорциональности между импульсом и скоростью частицы, так как ускорение перестает быть параллельным вызвавшей его силе и Масса получается зависящей от направления скорости частицы.

Согласно теории относительности, Масса частицы m связана с ее энергией Е соотношением:

(7)

Масса покоя определяет внутреннюю энергию частицы - так называемую энергию покоя Е 0 = m 0 с 2 . Таким образом, с Массой всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения Массы и закона сохранения энергии - они слиты в единый закон сохранения полной (т. е. включающей энергию покоя частиц) энергии. Приближенное разделение на закон сохранения энергии и закон сохранения Массы возможно лишь в классической физике, когда скорости частиц малы (v << c ) и не происходят процессы превращения частиц.

В релятивистской механике Масса не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ , который соответствует Массе Dm = DE/с 2 . Поэтому Масса составной частицы меньше суммы Масс образующих его частиц на величину DE/с 2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, Масса дейтрона (d ) меньше суммы Масс протона (p ) и нейтрона (n ); дефект Масс Dm связан с энергией Е g гамма-кванта (g ), рождающегося при образовании дейтрона: р + n -> d + g , E g = Dmc 2 . Дефект Массы, возникающий при образовании составной частицы, отражает органическую связь Массы и энергии.

Единицей Массы в СГС системе единиц служит грамм , а вМеждународной системе единиц СИ - килограмм . Масса атомов и молекул обычно измеряется в атомных единицах массы. Масса элементарных частиц принято выражать либо в единицах Массы электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, Масса электрона составляет 0,511 Мэв, Масса протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа Массы - одна из важнейших нерешенных задач современной физики. Принято считать, что Масса элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория Массы еще не создана. Не существует также теории, объясняющей, почему Масса элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике Масса тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R =< R гр . Звезды таких размеров будут невидимы; поэтому их назвали "черными дырами". Такие небесные тела должны играть важную роль во Вселенной.

Импульс силы. Импульс тела

По­ня­тие им­пуль­са было вве­де­но еще в пер­вой по­ло­вине XVII века Рене Де­кар­том, а затем уточ­не­но Иса­а­ком Нью­то­ном. Со­глас­но Нью­то­ну, ко­то­рый на­зы­вал им­пульс ко­ли­че­ством дви­же­ния, – это есть мера та­ко­во­го, про­пор­ци­о­наль­ная ско­ро­сти тела и его массе. Со­вре­мен­ное опре­де­ле­ние: им­пульс тела – это фи­зи­че­ская ве­ли­чи­на, рав­ная про­из­ве­де­нию массы тела на его ско­рость:

Пре­жде всего, из при­ве­ден­ной фор­му­лы видно, что им­пульс – ве­ли­чи­на век­тор­ная и его на­прав­ле­ние сов­па­да­ет с на­прав­ле­ни­ем ско­ро­сти тела, еди­ни­цей из­ме­ре­ния им­пуль­са слу­жит:

= [ кг· м/с]

Рас­смот­рим, каким же об­ра­зом эта фи­зи­че­ская ве­ли­чи­на свя­за­на с за­ко­на­ми дви­же­ния. За­пи­шем вто­рой закон Нью­то­на, учи­ты­вая, что уско­ре­ние есть из­ме­не­ние ско­ро­сти с те­че­ни­ем вре­ме­ни:

На­ли­цо связь между дей­ству­ю­щей на тело силой, точ­нее, рав­но­дей­ству­ю­щей сил и из­ме­не­ни­ем его им­пуль­са. Ве­ли­чи­на про­из­ве­де­ния силы на про­ме­жу­ток вре­ме­ни носит на­зва­ние им­пуль­са силы. Из при­ве­ден­ной фор­му­лы видно, что из­ме­не­ние им­пуль­са тела равно им­пуль­су силы.

Какие эф­фек­ты можно опи­сать с по­мо­щью дан­но­го урав­не­ния (рис. 1)?

Рис. 1. Связь им­пуль­са силы с им­пуль­сом тела (Ис­точ­ник)

Стре­ла, вы­пус­ка­е­мая из лука. Чем доль­ше про­дол­жа­ет­ся кон­такт те­ти­вы со стре­лой (∆t), тем боль­ше из­ме­не­ние им­пуль­са стре­лы (∆ ), а сле­до­ва­тель­но, тем выше ее ко­неч­ная ско­рость.

Два стал­ки­ва­ю­щих­ся ша­ри­ка. Пока ша­ри­ки на­хо­дят­ся в кон­так­те, они дей­ству­ют друг на друга с рав­ны­ми по мо­ду­лю си­ла­ми, как учит нас тре­тий закон Нью­то­на. Зна­чит, из­ме­не­ния их им­пуль­сов также долж­ны быть равны по мо­ду­лю, даже если массы ша­ри­ков не равны.

Про­ана­ли­зи­ро­вав фор­му­лы, можно сде­лать два важ­ных вы­во­да:

1. Оди­на­ко­вые силы, дей­ству­ю­щие в те­че­ние оди­на­ко­во­го про­ме­жут­ка вре­ме­ни, вы­зы­ва­ют оди­на­ко­вые из­ме­не­ния им­пуль­са у раз­лич­ных тел, неза­ви­си­мо от массы по­след­них.

2. Од­но­го и того же из­ме­не­ния им­пуль­са тела можно до­бить­ся, либо дей­ствуя неболь­шой силой в те­че­ние дли­тель­но­го про­ме­жут­ка вре­ме­ни, либо дей­ствуя крат­ко­вре­мен­но боль­шой силой на то же самое тело.

Со­глас­но вто­ро­му за­ко­ну Нью­то­на, можем за­пи­сать:

∆t = ∆ = ∆ / ∆t

От­но­ше­ние из­ме­не­ния им­пуль­са тела к про­ме­жут­ку вре­ме­ни, в те­че­ние ко­то­ро­го это из­ме­не­ние про­изо­шло, равно сумме сил, дей­ству­ю­щих на тело.

Про­ана­ли­зи­ро­вав это урав­не­ние, мы видим, что вто­рой закон Нью­то­на поз­во­ля­ет рас­ши­рить класс ре­ша­е­мых задач и вклю­чить за­да­чи, в ко­то­рых масса тел из­ме­ня­ет­ся с те­че­ни­ем вре­ме­ни.

Если же по­пы­тать­ся ре­шить за­да­чи с пе­ре­мен­ной мас­сой тел при по­мо­щи обыч­ной фор­му­ли­ров­ки вто­ро­го за­ко­на Нью­то­на:

то по­пыт­ка та­ко­го ре­ше­ния при­ве­ла бы к ошиб­ке.

При­ме­ром тому могут слу­жить уже упо­ми­на­е­мые ре­ак­тив­ный са­мо­лет или кос­ми­че­ская ра­ке­та, ко­то­рые при дви­же­нии сжи­га­ют топ­ли­во, и про­дук­ты этого сжи­га­е­мо­го вы­бра­сы­ва­ют в окру­жа­ю­щее про­стран­ство. Есте­ствен­но, масса са­мо­ле­та или ра­ке­ты умень­ша­ет­ся по мере рас­хо­да топ­ли­ва.

МОМЕНТ СИЛЫ - величина, характеризующая вращательный эффект силы; имеет размерность произведения длины на силу. Различают момент силы относительно центра (точки) и относительно оси.

M. с. относительно центра О наз. векторная величина M 0 , равная векторному произведению радиуса-вектора r , проведённого из O в точку приложения силы F , на силуM 0 = [rF ] или в др. обозначениях M 0 = r F (рис.). Численно M. с. равен произведению модуля силы на плечо h , т. е. на длину перпендикуляра, опущенного из О на линию действия силы, или удвоенной площади

треугольника, построенного на центре O и силе:

Направлен вектор M 0 перпендикулярно плоскости, проходящей через O и F . Сторона, куда направляется M 0 , выбирается условно (M 0 - аксиальный вектор). При правой системе координат вектор M 0 направляют в ту сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки.

M. с. относительно оси z наз. скалярная величина M z , равная проекции на ось z вектора M. с. относительно любого центра О , взятого на этой оси; величину M z можно ещё определять как проекцию на плоскость ху , перпендикулярную оси z, площади треугольника OAB или как момент проекции F xy силы F на плоскость ху , взятый относительно точки пересечения оси z с этой плоскостью. T. о.,

В двух последних выражениях M. с. считается положительным, когда поворот силы F xy виден с положит. конца оси z против хода часовой стрелки (в правой системе координат). M. с. относительно координатных осей Oxyz могут также вычисляться по аналитич. ф-лам:

где F x , F y , F z - проекции силы F на координатные оси, х, у, z - координаты точки А приложения силы. Величины M x , M y , M z равны проекциям вектора M 0 на координатные оси.