Курсовая работа применение интеграла. Конспект урока "применение интеграла"

Девиз урока: “Математика – язык, на котором говорят все точные науки” Н.И. Лобачевский

Цель урока: обобщить знания учащихся по теме “Интеграл”, “Применение интеграла”;расширить кругозор, знания о возможном применении интеграла к вычислению различных величин; закрепить навыки использовать интеграл для решения прикладных задач; прививать познавательный интерес к математике, развивать культуру общения и культуру математической речи; уметь учиться выступать перед учащимися и учителями.

Тип урока: повторительно-обобщающий.

Вид урока: урок – защита проекта “Применение интеграла”.

Оборудование: магнитная доска, плакаты “Применение интеграла”, карточки с формулами и заданиями для самостоятельной работы.

План урока:

1. Защита проекта:

  1. из истории интегрального исчисления;
  2. свойства интеграла;
  3. применение интеграла в математике;
  4. применение интеграла в физике;

2. Решение упражнений.

Ход урока

Учитель: Мощным средством исследования в математике, физике, механике и других дисциплинах является определенный интеграл – одно из основных понятий математического анализа. Геометрический смысл интеграла – площадь криволинейной трапеции. Физический смысл интеграла – 1) масса неоднородного стержня с плотностью, 2) перемещение точки, движущейся по прямой со скоростью за промежуток времени.

Учитель: Ребята нашего класса провели большую работу, они подобрали задачи, где применяется определенный интеграл. Им слово.

2 ученик: Свойства интеграла

3 ученик: Применение интеграла (на магнитной доске таблица).

4 ученик: Рассматриваем применение интеграла в математике для вычисления площади фигур.

Площадь всякой плоской фигуры, рассматриваемая в прямоугольной системе координат, может быть составлена из площадей криволинейных трапеций, прилежащих к оси Ох и оси Оу. Площадь криволинейной трапеции, ограниченной кривой у = f(х), осью Ох и двумя прямыми х=а и х=b, где а х b , f(х) 0 вычисляется по формуле см. рис. Если криволинейная трапеция прилегает к оси Оу , то её площадь вычисляется по формуле , см. рис. При вычислении площадей фигур могут представиться следующие случаи: а)Фигура расположена над осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b.(См. рис. ) Площадь этой фигуры находится по формуле 1 или 2. б) Фигура расположена под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b (см. рис. ). Площадь находится по формуле . в) Фигура расположена над и под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b(рис. ). г) Площадь ограничена двумя пересекающимися кривыми у=f(х) и у = (х) (рис. )

5 ученик: Решим задачу

х-2у+4=0 и х+у-5+0 и у=0

7 ученик: Интеграл, широко применяющийся в физике. Слово физикам.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью за промежуток времени от до вычисляется по формуле .

Примеры:

1. Скорость движения точки м/с. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию, . Следовательно,

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью м/с, второе - со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = (39,2-9,8^) м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v = 0, т.е. 39,2-9,8t = 0, откуда I = 4 с. По формуле (1) на ходим

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ

Работа, произведенная переменной силой f(х) при перемещении по оси Ох материальной точки от х = а до х=b, находится по формуле При решении задач на вычисление работы силы часто используется закон Г у к а: F=kx, (3) где F - сила Н; х -абсолютное удлинение пружины, м, вызванное силой F , а k -коэффициент пропорциональности, Н/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0,01k, т. е. kК = 5000 Н/м. Находим пределы интегрирования: а = 0,22 - 0,2 = 0,02 (м), b=0,32 - 0,2 = 0,12(м). Теперь по формуле (2) получим

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dх (рис. ). Работа А, которую надо произвести, чтобы поднять слой воды весом Р на высоту х, равна Рх.

Изменение глубины х на малую величину dх вызовет изменение объема V на величину dV = пr 2 dх и изменение веса Р на величину * dР = 9807 r 2 dх; при этом совершаемая работа А изменится на величину dА=9807пr 2 хdх. Проинтегрировав это равенство при изменении x от 0 до Н, получим

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ

Значение силы Р давления жидкости на горизонтальную площадку зависит от глубины погружения х этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (Н) на горизонтальную площадку вычисляется по формуле Р =9807 S x,

где - плотность жидкости, кг/м 3 ; S - площадь площадки, м 2 ; х - глубина погружения площадки, м.

Если площадка, испытывающая давление жидкости, не горизонтальна, то давление на нее различно на разных глубинах, следовательно, сила давления на площадку есть функция глубины ее погружения Р (х).

5. ДЛИНА ДУГИ

Пусть плоская кривая АВ (рис.) задана уравнением у =f(x) (a x b), причем f(x) и f ?(x) - непрерывные функции в промежутке [а,b]. Тогда дифференциал dl длины дуги АВ выражается формулой или , а длина дуги АВ вычисляется по формуле (4)

где а и b-значения независимой переменной х в точках А и В. Если кривая задана уравнением х = (у)(с у d), то длина дуги АВ вычисляется по формуле (5) где с и д значения независимой переменной у в точках А и В.

6. ЦЕНТР МАСС

При нахождении центра масс пользуются следующими правилами:

1) Координата х? центра масс системы материальных точек А 1 , А 2 ,..., А n с массами m 1 , m 2 , ..., m n , расположенных на прямой в точках с координатами х 1 , х 2 , ..., х n , находятся по формуле

(*); 2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив ее в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры. Пример. Пусть вдоль стержня-отрезка [а;b] оси Ох - распределена масса плотностью (х), где (х) - непрерывная функция. Покажем, что а) суммарная масса М стержня равна ; б) координата центра масс х" равна .

Разобьем отрезок [а; b] на n равных частей точками а= х 0 < х 1 < х 2 < ... <х n = b (рис. ). На каждом из n этих отрезков плотность можно считать при больших n постоянно и примерно равной (х k - 1) на k-м отрезке (в силу непрерывности (х). Тогда масса k-ого отрезка примерно равна а масса всего стержня равна




Определение Интеграл функции аналог суммы бесконечно большого количества бесконечно малых слагаемых. В простейшем случае имеется в виду разбиение области интегрирования, являющейся отрезком, на бесконечно малые отрезки, и сумма произведений значения функции аргумента, принадлежащего каждому отрезку, и длины соответствующего бесконечно малого отрезка области интегрирования, в пределе, при бесконечно мелком разбиении:


Интеграл в древности Интегрирование прослеживается ещё в древнем Египте, примерно в 1800 г. до н. э. Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближённого расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н. э. Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод впоследствии использовали Цзу Чунчжи и Цзу Гэн для нахождения объёма шара. Следующий крупный шаг в исчисление интегралов был сделан в Ираке, в XI веке, математиком Ибн ал-Хайсамом (известным как Alhazen в Европе), в своей работе «Об измерении параболического тела» он приходит к уравнению четвёртой степени. Решая эту проблему, он проводит вычисления, равносильные вычислению определённого интеграла, чтобы найти объём параболоида. Используя математическую индукцию, он смог обобщить свои результаты для интегралов от многочленов до четвёртой степени. Таким образом, он был близок к поиску общей формулы для интегралов от полиномов, но он не касается любых многочленов выше четвёртой степени. Следующий значительный прогресс в исчислении интегралов появится лишь в XVI веке. В работах Кавальери с его методом неделимых, а также в работах Ферма, были заложены основы современного интегрального исчисления. Дальнейшие шаги были сделаны в начале XVII века Барроу и Торричелли, которые указали на связь между интегрированием и дифференцированием.


Зачем нужны интегралы? Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл это один из основных инструментов работы с функциями. Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.


Применение в науке Все процессы в природе, в которых постоянно меняются какие-то параметры, например время, температура, давление, координаты, изучаются и вычисляются только с помощью дифференциального и интегрального исчисления. Интегралы при этом только азы. Без них не вычислишь даже площадь какой-либо криволинейной поверхности. Математика вообще развивает логическое мышление, что всем полезно. Конечно, они забываются, если эти знания по жизни не востребованы. Но это не значит, что их вообще не нужно изучать.


При обучении важно понять смысл мат. аппарата в целом и научиться применять его к решению бытовых задач, выработать определенный стиль мышления при котором ты не будешь полагаться на интуицию при принятии каких-то решений, а сможешь точно оценить результат и следствия поступков. Большинство интегралов получены как мат. модели каких-либо естественных процессов в рамках медицины, биологии, химии, экономики, и т.д. Конкретно математический анализ, внутри которого выводятся методы решения интегралов, помогает понять откуда что взялось.


Применение в технике Так же интегралы нашли себе широкое применение в технике. Например в ПИД-регуляторе с использованием его интегральной составляющей. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку.


Вот примерный принцип работы интегральной составляющей. Интегрирующая составляющая пропорциональна интегралу по времени от отклонения регулируемой величины. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку. Если система не испытывает внешних возмущений, то через некоторое время регулируемая величина стабилизируется на заданном значении, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечиваться интегрирующей составляющей. Тем не менее, интегрирующая составляющая также может приводить к автоколебаниям при неправильном выборе её коэффициента.




Список используемых источников

Слайд 2

Историческая справка

История понятия интеграла тесно связана с задачами нахождения квадратур, т.е. задачами на вычисление площадей. Вычислениями площадей поверхностей и объемов тел занимались еще математики Древней Греции и Рима. Первым европейским математиком, получившим новые формулы для площадей фигур и объемов тел, был знаменитый астроном И. Кеплер. После исследований ряда ученых (П.Ферма, Д.Валлиса) И. Барроу открыл связь между задачами отыскания площадей и проведением касательной (т.е. между интегрированием и дифференцированием). Исследование связи между этими операциями, свободное от геометрического языка, было дано И.Ньютоном и Г. Лейбницем. Современное обозначение интеграла восходит к Лейбницу, у которого оно выражало мысль, что площадь криволинейной трапеции есть сумма площадей бесконечно тонких полосок шириной d и высоты f(x). Сам знак интеграла является стилизованной латинской буквой S (summa). Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений.

Слайд 3

Краткая история интегрального исчисления

Многие значительные достижения математиков Древней Греции в решении задач на нахождение площадей, а также объемов тел связаны с именем Архимеда(287-212 до н. э.) Развивая идеи предшественников Архимед определил длину окружности и площадь круга, объем и поверхность шара. В работах «О шаре и цилиндре», «О спиралях», «О коноидах и сферах», он показал, что определение объемов шара, эллипсоида, гиперболоида и параболоида вращения сводится к определению объема конуса и цилиндра. Архимед разработал и применил методы, предвосхитившие созданное в XVII в. интегральное исчисление. Потребовалось более полутора тысяч лет, прежде чем идеи Архимеда нашли четкое выражение и были доведены до уровня исчисления. В XVII в. математики уже умели вычислять площади многих фигур с кривыми границами и объемы многих тел. А общая теория была создана во второй половине XVII в. в трудах великого английского математика Иссака Ньютона(1643-1716) и великого немецкого математика Готфрида Лейбница(1646-1716). Ньютон и Лейбниц являются основателями интегрального исчисления. Они открыли важную теорему, носящую их имя: где f(x) – функция, интегрируемая на отрезке , F(x) – одна из ее первообразных. Рассуждения, которые приводили Ньютон и Лейбниц, несовершенны с точки зрения современного математического анализа. В XVIII в. крупнейший представитель математического анализа Леонард Эйлер эти понятия обобщил в своих трудах. Только в начале XIX в. были окончательно созданы понятия интегрального исчисления. Обычно при этом отмечают заслуги французского математика Огюстена Коши и немецкого математика Георга Римана. Само слово интеграл придумал Я.Бернулли(1690г.). Оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. В1696г. появилось и название новой ветви математики – интегральное исчисление, которое ввел И.Бернулли. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Обозначение определенного интеграла ввел Иосиф Бернулли, а нижние и верхние пределы Леонард Эйлер.

Слайд 4

Неопределенный интеграл

Математические операции образуют пары двух взаимно обратных действий, например, сложение и вычитание, умножение и деление, возведение в целую положительную степень и извлечение корня. Дифференцирование дает возможность для заданной функции F(х) находить ее производную F´(х). Существует действие, обратное дифференцированию – это интегрирование – нахождение функции F(х) по известной ее производной f(x) = F´(х)или дифференциалу f(x)dx. Функция F(х) называется первообразной для функции f(x), если F´(х) = f(x) или dF(x)=f(x)dx.Если функция f(x) имеет первообразную F(х), то она имеет бесконечное множество первообразных, причем все ее первообразные содержатся в выражении F(х) +С, где С – постоянная. Неопределенным интегралом от функции f(x)(или от выражения f(x)dx) называется совокупность всех ее первообразных. Обозначение ∫f(x)dx = F(х) +С. Здесь ∫ – знак интеграла, f(x) - подынтегральная функция, f(x)dx - подынтегральное выражение, х – переменная интегрирования. Отыскание неопределенного интеграла называется интегрированием функции. Свойства неопределенного интеграла Производная от неопределенного интеграла равна подынтегральной функции: (∫ f(x)dx)´ = f(x) Дифференциал от неопределенного интеграла равен подынтегральному выражению: d (∫ f(x)dx) = f(x) dx Интеграл от дифференциала первообразной равен самой первообразной и дополнительному слагаемому С:∫d (F(x)) = F(х) +С Постоянный множитель можно выносить за знак неопределенного интеграла: ∫a f(x) dx =a ∫f(x) dx Интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от слагаемых: ∫ dx = ∫ dx ± ∫ dx

Слайд 5

Определенный интеграл

Понятие определенного интеграла выводится через криволинейную трапецию. Криволинейной трапецией называется фигура, ограниченная линиями y = f(x), y = 0, x=a, x=b.Площадь криволинейной трапеции выражается интегральной суммой или числом, которое называется определенным интегралом. Определенный интеграл вычисляется по формуле Ньютона – Лейбница. = F (x)|ba= F(b) – F(a) Общность обозначения определенного и неопределенного интегралов подчеркивает тесную связь между ними: определенный интеграл – это число, а неопределенный интеграл – совокупность первообразных функций. Связь между определенным и неопределенным интегралом выражается формулой Ньютона – Лейбница. Свойства определенного интеграла: Если верхний и нижний пределы интегрирования поменять местами, то определенный интеграл сохранит абсолютную величину, но изменит свой знак на противоположный. Если верхняя и нижняя границы интегрирования равны, то определенный интеграл равен нулю. Если отрезок интегрирования разбить на несколько частей, определенный интеграл на отрезке будет равен сумме определенных интегралов этих отрезков. Определенный интеграл от суммы функций, заданных на отрезке равен сумме определенных интегралов от слагаемых функций. Постоянный множитель к подынтегральной функции можно выносить за знак определенного интеграла. Оценка определенного интеграла: если m ≤ f(x) ≤ M на , то m (b – a)

Слайд 6

Геометрический смысл определенного интеграла

Пусть функция y=f(x) непрерывна на отрезке и f(x) ≥ 0. Фигура, ограниченная графиком АВ функции y=f(x), прямыми x=a, x=b и осью Ох (см. рисунок), называется криволинейной трапецией. Интегральная сумма и ее слагаемые имеют простой геометрический смысл: произведение равно площади прямоугольника с основанием и высотой, а сумма представляет собой площадь заштрихованной ступенчатой фигуры, изображенной на рисунке. Очевидно, что эта площадь зависит от разбиенияотрезка на частичные отрезки и выбора количества точек разбиения. Чем меньше ∆ х, тем площадь ступенчатой фигуры ближе к площади криволинейной трапеции. Следовательно, за точную площадь S криволинейной трапеции принимается предел интегральной суммы. Таким образом, с геометрической точки зрения определенный интеграл от неотрицательной функции численно равен площади соответствующей криволинейной трапеции.

Слайд 7

Методы интегрирования

1. Непосредственное интегрирование Непосредственным интегрированием принято называть вычисление неопределенных интегралов путем приведения их к табличным с применением основных свойств. Здесь могут представиться следующие случаи: 1) данный интеграл берется непосредственно по формуле соответствующего табличного интеграла; 2) данный интеграл после применения свойств приводится к одному или нескольким табличным интегралам; 3) данный интеграл после элементарных тождественных преобразований над подынтегральной функцией и применением свойств приводится к одному или нескольким табличным интегралам. 2. Интегрирование методом замены переменной (способом подстановки) Замена переменной в неопределенном интеграле производится с помощью подстановок двух видов: х = φ (t), где φ (t) – монотонная, непрерывно дифференцируемая функция новой переменной t. Формула замены переменной в этом случае имеет вид ∫f(x) = ∫f [φ (t)] φ΄ (t) d(t); 2) u = ψ(x), где u – новая переменная. Формула замены переменной при такой подстановке: ∫f [ψ(х)] ψ ΄(х) d(х) = ∫f (u) du 3. Интегрирование по частям Интегрированием по частям называется нахождение интеграла по формуле ∫udv = uv - ∫v du, где u = φ (x), v = ψ(х) – непрерывно дифференцируемые функции от х. С помощью этой формулы нахождение интеграла ∫udv сводится к отысканию другого интеграла ∫v du; ее применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен. При этом за u берется такая функция, которая при дифференцировании упрощается, а за dv – та часть подынтегрального выражения, интеграл от которого известен или может быть найден.

Слайд 8

Таблица неопределенных интегралов

  • Слайд 9

    Повторение теоретического материала

    Как найти площади изображенных фигур?

    Слайд 10

    Продолжаем повторять

  • Слайд 11

    Применение интеграла

    Кроме этого определенный интеграл используется для вычисления площадей плоских фигур, объемов тел вращения, длин дуг кривых.

    Слайд 12

    Вычисление объемов тел

    Пусть задано тело объемом V, причем имеется такая прямая, что, какую бы плоскость, перпендикулярную этой прямой, мы ни взяли, нам известна площадь S сечения тела этой плоскостью. Но плоскость, перпендикулярная оси Ох, пересекает ее в некоторой точке х. Следовательно, каждому числу х (из отрезка [а; b]) поставлено в соответствие единственное число S (х) - площадь сечения тела этой плоскостью. Тем самым на отрезке [а; b] задана функция S(x). Если функция S непрерывна на отрезке [а; b] то справедлива формула:

    Слайд 13

    ПРОВЕРЬ СЕБЯ!

    Найдите площадь изображенных фигур 1 – 5. Ответы: 1) S = 2/3 (четность функции); 2) S = 1 (площадь прямоугольного треугольника); 3) S = 4 (равенство фигур); 4) S = 2π (площадь полукруга); 5) S = 1 (площадь треугольника).

    Слайд 14

    Найди ошибку!

    Найти сумму площадей бесконечного количества фигур, заштрихованных на рисунках. (Аргумент каждой следующей функции увеличивается в 2 раза) Интересная задача! Ответ: sin nx=0 ; x=π/n; где n=1,2,4,8,16…; S=2+1+1/2+1/4+1/8+…=2/(1-1/2)=4 Ответ: 4.

    Слайд 15

    Программированный контроль

    Верные ответы: I вариант: 2,3,1 ; II вариант: 2,4,2.

    Слайд 16

    Самостоятельная работа

    Вычислите площадь фигуры, ограниченной линиями (схематично изобразив графики функций). 1) y = 6 + x – x2 и y = 6 – 2x; 2) y = 2x2 и y = x + 1 ; 3) y = 1 – x и y = 3 – 2x – x2 ; 4) y = x2 и y = . Ответ: 1) 4,5 ; 2) 9/8 ; 3) 4,5 ; 4) 1/3 .

    Слайд 17

    Задачи на вычисление объемов

    Найдите объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями: 1) y = x2 + 1, x = 0, x = 1, y = 0 ; 2) y = , x = 1 , x = 4 , y = 0 ; 3) y = 2x , y = x + 3, x = 0 , x = 1 ; 4) y = x + 2 , y = 1 , x = 0 , x = 2 ; 5) у2 – 4 х = 0, х – 2 = 0, х – 4 = 0, у = 0; 6) у2 – х + 1 = 0, х – 2 = 0, у = 0; 7) y = - x2 + 2х, у = 0; 8) у2 = 2 х, х – 2 = 0, у = 0; 9) y = , x = 3 , y = 0 ; 10) у = 1 – x2 , у = 0. Ответ: 1) ; 2) 7,5  ; 3) 11 ; 4) 16 ⅔; 5) 24 ; 6) /2; 7) 16/15; 8) 4 ; 9) 2 ; 10) 16/15.

    Слайд 18

    Задачи из ЕГЭ

    Найти площадь фигуры, ограниченной линиями 2) Фигура, ограниченная линиями y=x+6, x=1, y=0 делится параболой y=x 2+2x+4 на две части. Найти площадь каждой части. 3) Найти ту первообразную F(x) функции f(x)=2x+4, график которой касается прямой у=6х+3. Вычислить площадь фигуры, ограниченной графиком найденной первообразной и прямыми у=6х+3 и у=0.

    Слайд 19

    Контрольные вопросы

    Какое действие называется интегрированием? Какая функция называется первообразной для функции f(x)? Чем отличаются друг от друга различные первообразные функции для данной функции f(x)? Дайте определение неопределенного интеграла. Как проверить результат интегрирования? Чему равна производная от неопределенного интеграла? Чему равен ∫ d(lnx8 – sin 3x)? Перечислите методы интегрирования. Дайте определение определенного интеграла. Сформулируйте теорему Ньютона – Лейбница. Перечислите свойства определенного интеграла. Как вычислить площадь плоской фигуры с помощью интеграла (составьте словесный алгоритм)? Перечислите области применения интеграла, назовите величины, которые можно вычислить с помощью интеграла.

    Слайд 20

    Для любителей математики

    1) Вычислить площадь фигуры, ограниченной данными линиями:y=x2 при x0, y=1, y=4, x=0 Решение: Данная фигура симметрична криволинейной трапеции, ограниченной прямыми х=1, х=4, у=0, графиком функции, обратной у=х2, x0. Поэтому эти фигуры имеют равные площади и 2) Найти площадь фигуры, ограниченной прямыми у=3х+1, у=9-х, у=х+1. Решение: Вершины полученного ABC имеют координаты: А(0;1), В(2;7), С(4;5). Можно заметить, что ABC - прямоугольный (произведение угловых коэффициентов прямых у=х+1 у=9-х равно -1). Поэтому применение интеграла для вычисления S(ABC) не рационально. Её всегда можно найти как разность площадей треугольников, у которых известны высота и основание или же можно использовать координатный метод.

    Слайд 21

    Домашнее задание

    Найти площади фигур, ограниченных линиями (1-7) у=х2 (х0), у=1, у=4, х=0 у= х2-4х+8, у=3х2-х3, если х [-2;3] у=х2-4х+sin2(x/2), y=-3-cos2(x/2), если х у=3х+1, у=9-х, у=х+1 у=|x-2|, x|y|=2;x=1;x=3 y= arcsin x; у=0; x=0,5; x=1 При каком значении а прямая х=а делит площадь фигуры, ограниченной линиями у=2/х; х=1; х=3 в отношении 1:3? Вычислить исходя из его геометрического смысла.

    Слайд 22

    Список литературы

    Н. А. Колмогоров, «Алгебра и начала анализа», Москва, Просвещение,2000г. М. И. Башмаков, «Алгебра и начала анализа», Москва, ДРОФА,2002г. Ш.А.Алимов, «Алгебра и начала анализа», 11 кл., Москва, ДРОФА, 2004г. Л. В. Киселева, Пособие по математике для студентов медицинских училищ и колледжей, Москва, ФГОУ«ВУНМЦ Росздрава», 2005г. http://www.nerungri.edu.ru http://tambov.fio.ru http://www.zachetka.ru http://edu.of.ru http://festival.1september.ru

    Посмотреть все слайды

    Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
    Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
    Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

    Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

    _ _ ___ ___ ___ _____
    | || | / _ \ / _ \ |__ \ | ____|
    | || |_ | | | | | | | |) | | |__
    |__ _| | | | | | | | | / / |___ \
    | | | |_| | | |_| | / /_ ___) |
    |_| \___/ \___/ |____| |____/

    Введите число, изображенное выше:

    Подобные документы

      Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

      презентация , добавлен 26.01.2015

      Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

      презентация , добавлен 05.07.2016

      История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

      курсовая работа , добавлен 16.10.2013

      Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

      контрольная работа , добавлен 23.02.2011

      Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

      курсовая работа , добавлен 21.01.2008

      История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

      реферат , добавлен 07.09.2009

      Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

      дипломная работа , добавлен 20.07.2009

    Владимир 2002 год

    Владимирский государственный университет, Кафедра общей и прикладной физики

    Вступление

    Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

    История интегрального исчисления

    История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

    Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р у л л и (1690 г.) Вероятн о, оно происходит от латинского integro , которое переводится как приводи ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инт грал иное: слово integer означает целый.

    В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что в е первообразные функции отличаются на произвольн ю постоянн ю. b

    называют определенным интегралом (обо начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

    Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

    Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

    С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

    Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

    Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертика ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равн ю бесконечно малой величине f(х) . В соответствии с таким пониманием искомая площадь считалась равной сумме

    бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

    На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

    (1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

    Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

    Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

    S = S1 = c (b – а).

    Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

    Аналогичный принцип действует в стереометрии и оказывается полезн м при нахождении объемов.

    В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

    Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

    Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Ч бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

    Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

    Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

    Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875-1941) и А. Данжуа (18 4-1974), с ветским математиком А. Я. инчинчин ы (1894-1959).

    Определение и свойства интеграла

    Если F(x) – одна из первообразных функции f(x) на промежутке J, то первообразная на этом промежутке имеет вид F(x)+C, где CÎR.

    Определение. Множество всех первообразных функции f(x) на промежутке J называется определенным интегралом от функции f(x) на этом промежутке и обозначается òf(x)dx.

    òf(x)dx = F(x)+C, где F(x) – некоторая первообразная на промежутке J.

    f – подынтегральная функция, f(x) – подынтегральное выражение, x – переменная интегрирования, C – постоянная интегрирования.

    Свойства неопределенного интеграла.

    (òf(x)dx) ¢ = òf(x)dx ,

    òf(x)dx = F(x)+C, где F¢(x) = f(x)

    (òf(x)dx) ¢= (F(x)+C) ¢= f(x)

    òf¢(x)dx = f(x)+C– из определения.

    ò k f (x)dx = k ò f¢(x)dx

    если k – постоянная и F¢(x)=f(x),

    ò k f (x)dx = k F(x)dx = k(F(x)dx+C1)= k ò f¢(x)dx

    ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx + ò g(x)dx +...+ ò h(x)dx

    ò (f(x)+g(x)+...+h(x))dx = ò dx =

    = ò ¢dx = F(x)+G(x)+...+H(x)+C=

    = òf(x)dx + òg(x)dx +...+ òh(x)dx, где C=C1+C2+C3+...+Cn.

    Интегрирование

    Табличный способ.

    Способ подстановки.

    Если подынтегральная функция не является табличным интегралом, то возможно (не всегда) применить этот способ. Для этого надо:

    разбить подынтегральную функцию на два множителя;

    обозначить один из множителей новой переменной;

    выразить второй множитель через новую переменную;

    составить интеграл, найти его значение и выполнить обратную подстановку.

    Примечание: за новую переменную лучше обозначить ту функцию, которая связана с оставшимся выражением.

    1. òxÖ(3x2–1)dx;

    Пусть 3x2–1=t (t³0), возьмем производную от обеих частей:

    ódt 1 1 ó 1 1 t 2 2 1 ---Ø

    ô- t 2 = - ô t 2dt = – --– + C = -Ö 3x2–1 +C

    ò sin x cos 3x dx = ò – t3dt = – – + C

    Пусть cos x = t

    Метод преобразования подынтегральной функции в сумму или разность:

    ò sin 3x cos x dx = 1/2 ò (sin 4x + sin 2x) dx = 1/8 cos 4x – ¼ cos 2x + C

    ó x4+3x2+1 ó 1 1

    ô---- dx = ô(x2+2 – --–) dx = - x2 + 2x – arctg x + C

    Примечание: при решении этого примера хорошо делать многочлены ”углом”.

    По частям

    Если в заданном виде взять интеграл невозможно, а в то же время, очень легко находится первообразная одного множителя и производная другого, то можно использовать формулу.

    (u(x)v(x))’=u’(x)v(x)+u(x)v(x)

    u’(x)v(x)=(u(x)v(x)+u(x)v’(x)

    Проинтегрируем обе части

    òu’(x)v(x)dx=ò (u(x)v(x))’dx – òu(x)v’(x)dx

    ò u’(x)v(x)dx=u(x)v(x)dx – ò u(x)v’(x)dx

    ò x cos (x) dx = ò x dsin x = x sin x – ò sin x dx = x sin x + cos x + C

    Криволинейная трапеция

    Определение. Фигура, ограниченная графиком непрерывной, знакопостоянной функции f(x), осью абцисс и прямыми x=a, x=b, называется криволинейной трапецией.

    Способы нахождения площади криволинейной трапеции

    Теорема. Если f(x) непрерывная и неотрицательная функция на отрезке , то площадь соответствующей криволинейной трапеции равна приращению первообразных.

    Дано: f(x)– непрерывная неопр. функция, xÎ.

    Доказать: S = F(b) – F(a), где F(x) – первообразная f(x).

    Доказательство:

    Докажем, что S(a) – первообразная f(x).

    D(f) = D(S) =

    S’(x0)= lim(S(x0+Dx) – S(x0) / Dx), при Dx®0 DS – прямоугольник

    Dx®0 со сторонами Dx и f(x0)

    S’(x0) = lim(Dxf(x0) /Dx) = limf(x0)=f(x0): т.к. x0 точка, то S(x) –

    Dx®0 Dx®0 первообразная f(x).

    Следовательно по теореме об общем виде первообразной S(x)=F(x)+C.

    Т.к. S(a)=0, то S(a) = F(a)+C

    S = S(b)=F(b)+C = F(b)–F(a)

    Предел этой суммы называют определенным интегралом.

    Сумма стоящая под пределом, называется интегральной суммой.

    Определенный интеграл это предел интегральной суммы на отрезке при n®¥. Интегральная сумма получается как предел суммы произведений длины отрезка, полученного при разбиении области определения функции в какой либо точке этого интервала.

    a - нижний предел интегрирования;

    b - верхний.

    Формула Ньютона–Лейбница.

    Сравнивая формулы площади криволинейной трапеции делаем вывод:

    если F – первообразная для b на , то

    ò f(x)dx = F(b)–F(a)

    ò f(x)dx = F(x) ô = F(b) – F(a)

    Свойства определенного интеграла.

    ò f(x)dx = ò f(z)dz

    ò f(x)dx = F(a) – F(a) = 0

    ò f(x)dx = – ò f(x)dx

    ò f(x)dx = F(a) – F(b) ò f(x)dx = F(b) – F(a) = – (F(a) – F(b))

    Если a, b и c любые точки промежутка I, на котором непрерывная функция f(x) имеет первообразную, то

    ò f(x)dx = ò f(x)dx + ò f(x)dx

    F(b) – F(a) = F(c) – F(a) + F(b) – F(c) = F(b) – F(a)

    (это свойство аддитивности определенного интеграла)

    Если l и m постоянные величины, то

    ò (lf(x) +mj(x))dx = lò f(x)dx + mòj(x))dx –

    – это свойство линейности определенного интеграла.

    ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

    ò (f(x)+g(x)+...+h(x))dx = (F(b) + G(b) +...+ H(b)) –

    – (F(a) + G(a) +...+ H(a)) +C =

    F(b)–F(a)+C1 +G(b)–G(a)+C2+...+H(b)–H(a)+Cn=

    = ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

    Набор стандартных картинок

    S=ò f(x)dx + ò g(x)dx

    Применение интеграла

    I. В физике.

    Работа силы (A=FScosa, cosa¹ 1)

    Если на частицу действует сила F, кинетическая энергия не остается постоянной. В этом случае согласно

    приращение кинетической энергии частицы за время dt равно скалярному произведению Fds, где ds – перемещение частицы за время dt. Величина

    называется работой, совершаемой силой F.

    Пусть точка движется по оси ОХ под действием силы, проекция которой на ось ОХ есть функция f(x) (f–непрерывная функция). Под действием силы точка переместилась из точки S1(a) в S2(b). Разобьем отрезок на n отрезков, одинаковой длины Dx = (b – a)/n. Работа силы будет равна сумме работ силы на полученных отрезках. Т.к. f(x) –непрерывна, то при малом работа силы на этом отрезке равна f(a)(x1–a). Аналогично на втором отрезке f(x1)(x2–x1), на n-ом отрезке - f(xn–1)(b–xn–1). Следовательно работа на равна:

    А »An = f(a)Dx +f(x1)Dx+...+f(xn–1)Dx=

    = ((b–a)/n)(f(a)+f(x1)+...+f(xn–1))

    Приблизительное равенство переходит в точное при n®¥

    А = lim [(b–a)/n] (f(a)+...+f(xn–1))= òf(x)dx (по определению)

    Пусть пружина жесткости С и длины l сжата на половину свой длины. Определить величину потенциальной энергии Ер равна работе A, совершаемой силой –F(s) упругость пружины при её сжатии, то

    Eп = A= – ò (–F(s)) dx

    Из курса механики известно, что F(s)= –Cs.

    Отсюда находим

    Еп= – ò (–Cs)ds = CS2/2 | = C/2 l2/4

    Ответ: Cl2/8.

    Координаты центра масс

    Центр масс – точка через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела.

    Пусть материальная однородная пластина о имеет форму криволинейной трапеции {x;y |a£x£b; 0£y£f(x)} и функция y=f(x) непрерывна на , а площадь этойкриволинейной трапеции равна S, тогда координаты центра масс пластины о находят по формулам:

    x0 = (1/S) ò x f(x) dx; y0 = (1/2S) ò f 2(x) dx;

    Центр масс.

    Найти центр масс однородного полукруга радиуса R.

    Изобразим полукруг в системе координат OXY.

    y = (1/2S) òÖ(R2–x2)dx = (1/pR2) òÖ(R2–x2)dx =

    = (1/pR2)(R2x–x3/3)|= 4R/3p

    Ответ: M(0; 4R/3p)

    Путь, пройденный материальной точкой

    Если материальная точка движется прямолинейно со скоростью u=u(t) и за время T= t2–t1 (t2>t1) прошла путь S, то

    В геометрии

    Объём - количественная характеристика пространственного тела. За единицу измерения объёма принимают куб с ребром 1мм(1ди, 1м и т.д.).

    Количество кубов единичного объёма размещенных в данном теле - объём тела.

    Аксиомы объёма:

    Объём - это неотрицательная величина.

    Объём тела равен сумме объёмов тел, его составляющих.

    Найдем формулу для вычисления объёма:

    выберем ось ОХ по направлению расположения этого тела;

    определим границы расположения тела относительно ОХ;

    введем вспомогательную функцию S(x) задающую следующее соответствие: каждому x из отрезка поставим в соответствие площадь сечения данной фигуры плоскостью, проходящей через заданную точку x перпендикулярно оси ОХ.

    разобьем отрезок на n равных частей и через каждую точку разбиения проведём плоскость перпендикулярную оси ОХ, при этом наше тело разобьется на части. По аксиоме

    V=V1+V2+...+Vn=lim(S(x1)Dx +S(x2)Dx+...+S(xn)Dx

    Dx®0, а Sk®Sk+1, а объем части, заключенной между двумя соседними плоскостями равна объему цилиндра Vц=SоснH.

    Имеем сумму произведений значений функций в точках разбиения на шаг разбиения, т.е. интегральную сумму. По определению определенного интеграла, предел этой суммы при n®¥ называется интегралом a

    V= òS(x)dx, где S(x) – сечение плоскости, проходящей через

    bвыбранную точку перпендикулярно оси ОХ.

    Для нахождения объема надо:

    1). Выбрать удобным способом ось ОХ.

    2). Определить границы расположения этого тела относительно оси.

    3). Построить сечение данного тела плоскостью перпендикулярно оси ОХ и проходящей через соответственную точку.

    4). Выразить через известные величины функцию, выражающую площадь данного сечения.

    5). Составить интеграл.

    6). Вычислив интеграл, найти объем.

    Объем фигур вращения

    Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.

    Функция S(x) у фигуры вращения есть круг.

    Sсеч(x)=p f 2(x)

    Длина дуги плоской кривой

    Пусть на отрезке функция y = f(x) имеет непрерывную производную y’ = f ’(x). В этом случае длину дуги l “куска” графика функции y = f(x), xÎ можно найти по формуле

    l = òÖ(1+f’(x)2)dx

    Список литературы

    М.Я.Виленкин, О.С.Ивашев–Мусатов, С.И.Шварцбурд, “Алгебра и математический анализ”, Москва,1993г.

    “Сборник задач по математическому анализу”, Москва,1996г.

    И.В.Савельев, “Курс общей физики”, том 1, Москва, 1982г.