Физический смысл волновой функции. Волновая функция

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или -функцией (пси - функцией).

Волновая функция - функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * - функция комплексно сопряженная с Ψ

(z = a +ib, z * =a- ib, z * - комплексно сопряженное)

Если частица находится в конечном объеме V, то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

Условие нормировки

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

 - функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

    непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),

    Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями  1 , 2 ... n , то она может находится в состоянии , описываемой линейной комбинаций этих функций:

С n (n=1,2...) - любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

Временное уравнение Шредингера.

Набла - оператор Лапласа

Потенциальная функция частицы в силовом поле,

Ψ(y,z,t) - искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:

(2)

Е - полная энергия частицы, постоянная в случае стационарного поля.

Подставив (2)  (1):

(3)

Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

Граничные условия:

волновые функции должны быть регулярными , т.е.

1)конечными;

2) однозначными;

3) непрерывными.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .

Волновая функция и ее физический смысл.

Какой физический смысл следует придать введенной нами волновой функции?

Мы уже обсуждали это вопрос и пришли к выводу, что это поле определяет вероятность обнаружить частицу в различных точках пространства в заданный момент времени. Точнее, квадрат модуля волновой функции есть плотность вероятности обнаружить частицу в точке с координатой в момент времени t :

(17.15)

Естественно полагать, что где-то в пространстве частица достоверно существует. По-

этому волновая функция должна удовлетворять следующему условию нормировки

(17.16)

Здесь интеграл берется по области определения волновой функции, как правило, это все бесконечное пространство. Таким образом, состояния частицы должны описываться функциями с интегрируемым квадратом модуля.

Здесь нас ожидает «неприятность». Единственная волновая функция, которую мы уже знаем, это волна де Бройля, соответствующая частице с заданным значением импульса. Поскольку для этой волны

ng w:val="EN-US"/>1"> (17.17)

то нормировочный интеграл, очевидно, расходится. С другой стороны, такая ситуация

понятна. Если импульс известен точно (а для волны де Бройля это именно так), то из соотношения неопределенностей для неопределенности координаты получаем

(17.18)

т.е. частица делокализована по всему бесконечному пространству. Именно такое абсолютно делокализованное состояние и задает плоская волна. Конечно, к реальному состоянию частицы плоская волна прямого отношения не имеет. Это математическая абстракция. Любой физический процесс происходит, может быть и в макроскопически большой, но ограниченной области пространства. Поэтому мы можем утверждать, что состояние частицы с точно определенным значением импульса принципиально невозможно, а волновая функция вида (17.1) или (17.7) не описывает никакого состояния реаль ного физического объекта. С другой стороны, если волновой пакет достаточно широкий, т.е. его пространственной размер много больше длин волн де Бройля его образующих, приближение плоской волны часто оказывается очень удобным с математической точки зрения.

Таким образом, помимо функций с интегрируемым квадратом модуля в квантовой механике бывает удобно работать и с функциями, которые условию нормировки

(6.16) не удовлетворяют. Рассмотрим вопрос о нормировке таких функций на примере состояния (6.1). Мы опять для простоты ограничимся одномерным случаем. Будем считать, что состояние в виде плоской волны

(17.19)

(A = - нормировочная константа, индекс « p » указывает, что это состояние с импульсом p ) задано на отрезке x ∈(− L/ 2, L/ 2). Мы полагаем, что L велико и в дальнейшем перейдем к пределу L →∞.

Рассмотрим значение следующего интеграла

(17.20)

Вычисление интеграла (17.20) дает

Здесь Δk = (p p ") h . При Δk ≠ 0 в пределе L →∞ получаем, что I →0 , т.е. волновые функции состояний с различными значениями импульса становятся ортогональны друг другу. В случае Δk ≡ 0 получаем, что I = 1 для любого конечного сколь угодно большого значения L , т.е. условие нормировки (17.16) оказывается выполненным. Указанная процедура может быть использована при решении конкретных задач, однако не совсем удобна, так как в исходной функции (17.19) появился нормировочный размер L . Поэтому обычно поступают немного иначе. Пусть нормировочная константа A = 1. Тогда вычисление интеграла (17.21) в пределе L →∞ дает

Мы здесь использовали известные соотношения

Отсюда возникает условие нормировки на δ - функцию:

где (17.23)

В трехмерном случае аналогично получаем (17.24)

причем (17.25)

Условие нормировки на δ - функцию используется в квантовой теории всякий раз, когда

волновая функция не может быть нормирована согласно условию (17.16).

Опыт Франка-Герца

Опыт Франка - Герца - опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C 1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V , ускоряющая электроны, и снимается вольт-амперная характеристика. К сетке C 2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост тока I при увеличении ускоряющего напряжения вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg, и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эВ значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

Принцип Паули.

На первый взгляд представляется, что в атоме все электроны должны заполнить уровень с наименьшей возможной энергией. Опыт же показывает, что это не так.

Действительно, в соответствии с принципом Паули, в атоме не может быть электронов с одинаковыми значениями всех четырёх квантовых чисел.
Каждому значению главного квантового числа п соответствует 2п 2 состояний, отличающихся друг от друга значениями квантовых чисел l, m и m S .

Совокупность электронов атома с одинаковыми значения квантового числа п образует так называемую оболочку. В соответствии с номером п

Таблица 18. 1

Оболочки подразделяются на подоболочки , отличающиеся квантовым числом l . Число состояний в подоболочке равно 2(2l + 1).
Различные состояния в подоболочке отличаются значениями квантовых чисел т и m S .

Таблица 18. 2

Понимание периодической системы элементов основано на идее об оболочечной структуре электронного облака атома.

Каждый следующий атом получается из предыдущего добавлением заряда ядра на единицу (е ) и добавлением одного электрона, который помещают в разрешённое принципом Паули состояние с наименьшей энергией.

В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров - просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема : .

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова - Бома.

Уравне́ние Шрёдингера - уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна - Гордона,уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из важнейших уравнений физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае . Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классическойтеорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.

Зависимое от времени уравнение

Наиболее общая форма уравнения Шрёдингера - это форма, включающая зависимость от времени :

Пример нерелятивистского уравнения Шрёдингера в координатном представлении для точечной частицы массы , движущейся в потенциальном поле c потенциалом :

Зависящее от времени уравнение Шрёдингера

Формулировка

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в n-мерном конфигурационном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , - постоянная Планка; - масса частицы, - внешняя по отношению к частице потенциальная энергия в точке в момент времени , - оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

30 вопрос Фундаментальные физические взаимодействия. Понятие физического вакуума в современной научной картине мира.

Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.

1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 10 0 , радиус действия порядка

10 -15 , время протекания t »10 -23 с. Частицы – переносчики - p-мезоны.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t » 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица – переносчик – фотон.

3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t » 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействияr»10 -18 м. (Частица – переносчик - векторный бозон).

4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как его константа равна 10 -38 , т.е. из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума приспонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

31 вопрос Структурные уровни материи. Микромир. Макромир. Мегамир.

Структурные уровни материи

(1) - Характерной чертой материи является ее структура, поэтому одной из важнейших задач естествознания является исследование этой структуры.

В настоящее время принято, что наиболее естественным и наглядным признаком структуры материи являются характерный размер объекта на данном уровне и его масса. В соответствии с этими представлениями выделяются следующие уровни:

(3) - Понятие «микромир» охватывает фундаментальные и элементарные частицы, ядра, атомы и молекулы. Макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, начиная с элементарное единицей живого – клетки, человеком и продуктами его деятельности, т.е. макротелами . Наиболее крупные объекты (планеты, звезды, галактики и их скопления образуют мегамир. Важно сознавать, что жестких границ между этими мирами нет, а речь идет лишь о различных уровнях рассмотрения материи.

Для каждого из рассмотренных основных уровней, в свою очередь, можно выделить подуровни, характеризуемые свой структурой, своими особенностями организации.

Изучение материи на ее различных структурных уровнях требует своих специфических средств и методов.

32 вопрос Эволюция Вселенной (Фридман, Хаббл, Гамов) и реликтовое излучение.

· Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая запутанность · Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

См. также: Портал:Физика

Волнова́я фу́нкция , или пси-фу́нкция \psi - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

\left|\psi(t)\right\rangle=\int \Psi(x,t)\left|x\right\rangle dx

где \left|x\right\rangle = \left|x_1, x_2, \ldots , x_n\right\rangle - координатный базисный вектор, а \Psi(x,t)= \langle x\left|\psi(t)\right\rangle - волновая функция в координатном представлении .

Нормированность волновой функции

Волновая функция \Psi по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

{\int\limits_{V}{\Psi^\ast\Psi}dV}=1

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями \Psi_1 и \Psi_2, то она может пребывать и в состоянии, описываемом волновой функцией

\Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 при любых комплексных c_1 и c_2.

Очевидно, что можно говорить и о суперпозиции (наложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 + \ldots + {c}_N{\Psi}_N=\sum_{n=1}^{N} {c}_n{\Psi}_n.

В таком состоянии квадрат модуля коэффициента {c}_n определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией {\Psi}_n.

Поэтому для нормированных волновых функций \sum_{n=1}^{N}\left|c_{n}\right|^2=1.

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

  1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл (1) станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией, т.е принадлежала гильбертовому пространству L^2. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
  2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
  3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial y}, \frac{\partial \Psi}{\partial z}. Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода .

Волновая функция в различных представлениях

Набор координат, которые выступают в роли аргументов функции , представляет собой полную систему коммутирующих наблюдаемых . В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении , то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении , то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс .

Матричная и векторная формулировки

Волновая функция одного и того же состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Философский смысл волновой функции

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности . То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, - это проблема самой сути научного метода познания мира.

См. также

Напишите отзыв о статье "Волновая функция"

Литература

  • Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. Энциклопедия, 1984. - 944 с.

Ссылки

  • Квантовая механика - статья из Большой советской энциклопедии .