Как выражение разложить на множители. Как разложить на множители алгебраическое уравнение

Что делать, если в процессе решения задачи из ЕГЭ или на вступительном экзамене по математике вы получили многочлен, который не получается разложить на множители стандартными методами, которыми вы научились в школе? В этой статье репетитор по математике расскажет об одном эффективном способе, изучение которого находится за рамками школьной программы, но с помощью которого разложить многочлен на множители не составит особого труда. Дочитайте эту статью до конца и посмотрите приложенный видеоурок. Знания, которые вы получите, помогут вам на экзамене.

Разложение многочлена на множители методом деления


С том случае, если вы получили многочлен больше второй степени и смогли угадать значение переменной, при которой этот многочлен становится равным нулю (например, это значение равно ), знайте! Этот многочлен можно без остатка разделить на .

Например, легко видеть, что многочлен четвёртой степени обращается в нуль при . Значит его без остатка можно разделить на , получив при этом многочлен третей степени (меньше на единицу). То есть представить в виде:

где A , B , C и D — некоторые числа. Раскроем скобки:

Поскольку коэффициенты при одинаковых степенях должны быть одинаковы, то получаем:

Итак, получили:

Идём дальше. Достаточно перебрать несколько небольших целых чисел, что увидеть, что многочлен третьей степени вновь делится на . При этом получается многочлена второй степени (меньше на единицу). Тогда переходим к новой записи:

где E , F и G — некоторые числа. Вновь раскрываем скобки и приходим к следующему выражению:

Опять из условия равенства коэффициентов при одинаковых степенях получаем:

Тогда получаем:

То есть исходный многочлен может быть разложен на множители следующим образом:

В принципе, при желании, используя формулу разность квадратов, результат можно представить также в следующем виде:

Вот такой простой и эффективный способ разложения многочленов на множители. Запомните его, он может вам пригодиться на экзамене или олимпиаде по математике. Проверьте, научились ли вы пользоваться этим методом. Попробуйте решить следующее задание самостоятельно.

Разложите многочлен на множители :

Свои ответы пишите в комментариях.

Материал подготовил , Сергей Валерьевич

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Yandex.RTB R-A-339285-1

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей (x - x i) , i = 1 , 2 , … , n , тогда P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 1) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.

Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 3) x 2 + p x + q , где x 2 + p x + q = (x - x 1) (x - x 2) .

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на (x - s) , тогда получаем остаток, который равен многочлену в точке s , тогда получим

P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) + P n (s) , где Q n - 1 (x) является многочленом со степенью n - 1 .

Следствие из теоремы Безу

Когда корень многочлена P n (x) считается s , тогда P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a (x - x 1) (x - x 2) , где x 1 и x 2 - это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

Необходимо найти корни уравнения 4 x 2 - 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = (- 5) 2 - 4 · 4 · 1 = 9 . Отсюда имеем, что

x 1 = 5 - 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1

Отсюда получаем, что 4 x 2 - 5 x + 1 = 4 x - 1 4 x - 1 .

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4 x - 1 4 x - 1 = 4 x 2 - x - 1 4 x + 1 4 = 4 x 2 - 5 x + 1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3 x 2 - 7 x - 11 .

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 - 7 x - 11 = 0 .

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3 x 2 - 7 x - 11 = 0 D = (- 7) 2 - 4 · 3 · (- 11) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 - D 2 · 3 = 7 - 181 6

Отсюда получаем, что 3 x 2 - 7 x - 11 = 3 x - 7 + 181 6 x - 7 - 181 6 .

Пример 3

Произвести разложение многочлена 2 x 2 + 1 на множители.

Решение

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

2 x 2 + 1 = 0 x 2 = - 1 2 x 1 = - 1 2 = 1 2 · i x 2 = - 1 2 = - 1 2 · i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x - 1 2 · i x + 1 2 · i .

Пример 4

Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .

Решение

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

x 2 + 1 3 x + 1 = 0 D = 1 3 2 - 4 · 1 · 1 = - 35 9 x 1 = - 1 3 + D 2 · 1 = - 1 3 + 35 3 · i 2 = - 1 + 35 · i 6 = - 1 6 + 35 6 · i x 2 = - 1 3 - D 2 · 1 = - 1 3 - 35 3 · i 2 = - 1 - 35 · i 6 = - 1 6 - 35 6 · i

Получив корни, запишем

x 2 + 1 3 x + 1 = x - - 1 6 + 35 6 · i x - - 1 6 - 35 6 · i = = x + 1 6 - 35 6 · i x + 1 6 + 35 6 · i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на (x - x 1) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x .

Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x = = x (a n x n - 1 + a n - 1 x n - 2 + . . . + a 1)

Данный способ считается вынесением общего множителя за скобки.

Пример 5

Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 - x на множители.

Решение

Видим, что x 1 = 0 - это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4 x 3 + 8 x 2 - x = x (4 x 2 + 8 x - 1)

Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x - 1 . Найдем дискриминант и корни:

D = 8 2 - 4 · 4 · (- 1) = 80 x 1 = - 8 + D 2 · 4 = - 1 + 5 2 x 2 = - 8 - D 2 · 4 = - 1 - 5 2

Тогда следует, что

4 x 3 + 8 x 2 - x = x 4 x 2 + 8 x - 1 = = 4 x x - - 1 + 5 2 x - - 1 - 5 2 = = 4 x x + 1 - 5 2 x + 1 + 5 2

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Пример 6

Произвести разложение выражения f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа - 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Отсюда следует, что х = 2 и х = - 3 – это корни исходного многочлена, который можно представить как произведение вида:

f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x 3 + 5 x 2 + 9 x + 9) = = (x - 2) (x + 3) (x 2 + 2 x + 3)

Переходим к разложению квадратного трехчлена вида x 2 + 2 x + 3 .

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x + 3) (x 2 + 2 x + 3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f (x) = 2 x 3 + 19 x 2 + 41 x + 15 .

Решение

Необходимо выполнить замену переменной y = 2 x , следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4 . Получаем, что

4 f (x) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g (y)

Когда получившаяся функция вида g (y) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , ± 60

Перейдем к вычислению функции g (y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

g (1) = 1 3 + 19 · 1 2 + 82 · 1 + 60 = 162 g (- 1) = (- 1) 3 + 19 · (- 1) 2 + 82 · (- 1) + 60 = - 4 g (2) = 2 3 + 19 · 2 2 + 82 · 2 + 60 = 308 g (- 2) = (- 2) 3 + 19 · (- 2) 2 + 82 · (- 2) + 60 = - 36 g (3) = 3 3 + 19 · 3 2 + 82 · 3 + 60 = 504 g (- 3) = (- 3) 3 + 19 · (- 3) 2 + 82 · (- 3) + 60 = - 42 g (4) = 4 3 + 19 · 4 2 + 82 · 4 + 60 = 756 g (- 4) = (- 4) 3 + 19 · (- 4) 2 + 82 · (- 4) + 60 = - 28 g (5) = 5 3 + 19 · 5 2 + 82 · 5 + 60 = 1070 g (- 5) = (- 5) 3 + 19 · (- 5) 2 + 82 · (- 5) + 60

Получаем, что у = - 5 – это корень уравнения вида y 3 + 19 y 2 + 82 y + 60 , значит, x = y 2 = - 5 2 - это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2 x 3 + 19 x 2 + 41 x + 15 на x + 5 2 .

Решение

Запишем и получим:

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 (2 x 2 + 14 x + 6) = = 2 x + 5 2 (x 2 + 7 x + 3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x 2 + 7 x + 3 . Приравниванием к нулю и находим дискриминант.

x 2 + 7 x + 3 = 0 D = 7 2 - 4 · 1 · 3 = 37 x 1 = - 7 + 37 2 x 2 = - 7 - 37 2 ⇒ x 2 + 7 x + 3 = x + 7 2 - 37 2 x + 7 2 + 37 2

Отсюда следует, что

2 x 3 + 19 x 2 + 41 x + 15 = 2 x + 5 2 x 2 + 7 x + 3 = = 2 x + 5 2 x + 7 2 - 37 2 x + 7 2 + 37 2

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Пример 9

Произвести разложение многочлена x 4 + 4 x 3 - x 2 - 8 x - 2 на множители.

Решение

Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1 , - 1 , 2 и - 2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что

1 4 + 4 · 1 3 - 1 2 - 8 · 1 - 2 = - 6 ≠ 0 (- 1) 4 + 4 · (- 1) 3 - (- 1) 2 - 8 · (- 1) - 2 = 2 ≠ 0 2 4 + 4 · 2 3 - 2 2 - 8 · 2 - 2 = 26 ≠ 0 (- 2) 4 + 4 · (- 2) 3 - (- 2) 2 - 8 · (- 2) - 2 = - 6 ≠ 0

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 4 + 4 x 3 - 2 x 2 + x 2 - 8 x - 2 = = (x 4 - 2 x 2) + (4 x 3 - 8 x) + x 2 - 2 = = x 2 (x 2 - 2) + 4 x (x 2 - 2) + x 2 - 2 = = (x 2 - 2) (x 2 + 4 x + 1)

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

x 2 - 2 = 0 x 2 = 2 x 1 = 2 x 2 = - 2 ⇒ x 2 - 2 = x - 2 x + 2 x 2 + 4 x + 1 = 0 D = 4 2 - 4 · 1 · 1 = 12 x 1 = - 4 - D 2 · 1 = - 2 - 3 x 2 = - 4 - D 2 · 1 = - 2 - 3 ⇒ x 2 + 4 x + 1 = x + 2 - 3 x + 2 + 3

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 2 - 2 x 2 + 4 x + 1 = = x - 2 x + 2 x + 2 - 3 x + 2 + 3

Замечание

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Пример 10

Произвести разложение на множители многочлен x 4 + 3 x 3 - x 2 - 4 x + 2 .

Решение

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = = (x 4 + x 3) + (2 x 3 + 2 x 2) + (- 2 x 2 - 2 x) - x 2 - 2 x + 2 = = x 2 (x 2 + x) + 2 x (x 2 + x) - 2 (x 2 + x) - (x 2 + 2 x - 2) = = (x 2 + x) (x 2 + 2 x - 2) - (x 2 + 2 x - 2) = (x 2 + x - 1) (x 2 + 2 x - 2)

После разложения на множители получим, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = x 2 + x - 1 x 2 + 2 x - 2 = = x + 1 + 3 x + 1 - 3 x + 1 2 + 5 2 x + 1 2 - 5 2

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x 4 + 4 x 3 + 6 x 2 + 4 x - 2 на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3

На последовательность коэффициентов суммы в скобках указывает выражение x + 1 4 .

Значит, имеем x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 .

После применения разности квадратов, получим

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3 = = x + 1 - 3 4 x + 1 + 3 4 x 2 + 2 x + 1 + 3

Пример 12

Произвести разложение на множители x 3 + 6 x 2 + 12 x + 6 .

Решение

Займемся преобразованием выражения. Получаем, что

x 3 + 6 x 2 + 12 x + 6 = x 3 + 3 · 2 · x 2 + 3 · 2 2 · x + 2 3 - 2 = (x + 2) 3 - 2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x 3 + 6 x 2 + 12 x + 6 = = (x + 2) 3 - 2 = = x + 2 - 2 3 x + 2 2 + 2 3 x + 2 + 4 3 = = x + 2 - 2 3 x 2 + x 2 + 2 3 + 4 + 2 2 3 + 4 3

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x 6 + 5 x 3 + 6 .

Решение

По условию видно, что необходимо произвести замену y = x 3 . Получаем:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

Корни полученного квадратного уравнения равны y = - 2 и y = - 3 , тогда

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3 = = x + 2 3 x 2 - 2 3 x + 4 3 x + 3 3 x 2 - 3 3 x + 9 3

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где - являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

Таким образом, исходный многочлен раскладывается на множители:

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители

Очень часто числитель и знаменатель дроби представляют собой алгебраические выражения, которые сначала нужно разложить на множители, а потом, обнаружив среди них одинаковые, разделить на них и числитель, и знаменатель, то есть сократить дробь. Заданиям разложить многочлен на множители посвящена целая глава учебника по алгебре в 7-м классе. Разложение на множители можно осуществить 3 способами , а также комбинацией этих способов.

1. Применение формул сокращенного умножения

Как известно, чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить. Есть, как минимум, 7 (семь) часто встречающихся случаев умножения многочленов, которые вошли в понятие . Например,

Таблица 1. Разложение на множители 1-м способом

2. Вынесение общего множителя за скобку

Этот способ основан на применении распределительного закона умножения. Например,

Каждое слагаемое исходного выражения мы делим на множитель, который выносим, и получаем при этом выражение в скобках (то есть в скобках остаётся результат деления того, что было, на то, что выносим). Прежде всего нужно правильно определить множитель , который надо вынести за скобку.

Общим множителем может быть и многочлен в скобках:

При выполнении задания «разложите на множители» надо быть особенно внимательным со знаками при вынесении общего множителя за скобки. Чтобы поменять знак у каждого слагаемого в скобке (b — a) , вынесем за скобку общий множитель -1 , при этом каждое слагаемое в скобке разделится на -1: (b — a) = — (a — b) .

В том случае если выражение в скобках возводится в квадрат (или в любую чётную степень), то числа внутри скобок можно менять местами совершенно свободно, так как вынесенные за скобки минусы при умножении всё равно превратятся в плюс: (b — a) 2 = (a — b) 2 , (b — a) 4 = (a — b) 4 и так далее…

3. Способ группировки

Иногда общий множитель имеется не у всех слагаемых в выражении, а только у некоторых. Тогда можно попробовать сгруппировать слагаемые в скобки так, чтобы из каждой можно было какой-то множитель вынести. Способ группировки - это двойное вынесение общих множителей за скобки.

4. Использование сразу нескольких способов

Иногда нужно применить не один, а несколько способов разложения многочлена на множители сразу.

Это конспект по теме «Разложение на множители» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Разложить на множители большое число – нелегкая задача. Большинство людей затрудняются раскладывать четырех- или пятизначные числа. Для упрощения процесса запишите число над двумя колонками.

  • Разложим на множители число 6552.
  • Разделите данное число на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления. Как отмечалось выше, четные числа легко раскладывать на множители, так как их наименьшим простым множителем всегда будет число 2 (у нечетных чисел наименьшие простые множители различны).

    • В нашем примере число 6552 – четное, поэтому 2 является его наименьшим простым множителем. 6552 ÷ 2 = 3276. В левой колонке запишите 2, а в правой - 3276.
  • Далее разделите число в правой колонке на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления (продолжите этот процесс до тех пор, пока в правой колонке не останется 1).

    • В нашем примере: 3276 ÷ 2 = 1638. В левой колонке запишите 2, а в правой - 1638. Далее: 1638 ÷ 2 = 819. В левой колонке запишите 2, а в правой - 819.
  • Вы получили нечетное число; для таких чисел найти наименьший простой делитель сложнее. Если вы получили нечетное число, попробуйте разделить его на наименьшие простые нечетные числа: 3, 5, 7, 11.

    • В нашем примере вы получили нечетное число 819. Разделите его на 3: 819 ÷ 3 = 273. В левой колонке запишите 3, а в правой - 273.
    • При подборе делителей опробуйте все простые числа вплоть до квадратного корня из наибольшего делителя, который вы нашли. Если ни один делитель не делит число нацело, то вы, скорее всего, получили простое число и можете прекратить вычисления.
  • Продолжите процесс деления чисел на простые делители до тех пор, пока в правой колонке не останется 1 (если в правой колонке вы получили простое число, разделите его само на себя, чтобы получить 1).

    • Продолжим вычисления в нашем примере:
      • Разделите на 3: 273 ÷ 3 = 91. Остатка нет. В левой колонке запишите 3, а в правой - 91.
      • Разделите на 3. 91 делится на 3 с остатком, поэтому разделите на 5. 91 делится на 5 с остатком, поэтому разделите на 7: 91 ÷ 7 = 13. Остатка нет. В левой колонке запишите 7, а в правой - 13.
      • Разделите на 7. 13 делится на 7 с остатком, поэтому разделите на 11. 13 делится на 11 с остатком, поэтому разделите на 13: 13 ÷ 13 = 1. Остатка нет. В левой колонке запишите 13, а в правой - 1. Ваши вычисления закончены.
  • В левой колонке представлены простые множители исходного числа. Другими словами, при перемножении всех чисел из левой колонки вы получите число, записанное над колонками. Если один множитель появляется в списке множителей несколько раз, используйте показатели степени для его обозначения. В нашем примере в списке множителей 2 появляется 4 раза; запишите эти множители как 2 4 , а не как 2*2*2*2.

    • В нашем примере 6552 = 2 3 × 3 2 × 7 × 13. Вы разложили число 6552 на простые множители (порядок множителей в этой записи не имеет значения).