Как узнать электронное строение атома. Строение атома

Атом - это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.
Строение атомных ядер
Ядра атомов состоят из элементарных частиц двух видов: протонов (p ) и нейтронов (n ). Сумма протонов и нейтронов в ядре одного атома называется нуклонним числом :
,
где А - нуклонне число, N - число нейтронов, Z - число протонов.
Протоны имеют положительный заряд (+1), нейтроны заряда не имеют (0), электроны имеют отрицательный заряд (-1). Массы протона и нейтрона примерно одинаковы, их принимают равными 1. Масса электрона намного меньше чем масса протона, поэтому в химии ею пренебрегают, считая, что вся масса атома сосредоточена в его ядре.
Число положительно заряженных протонов в ядре равно числу отрицательно заряженных электронов, то атом в целом електронейтральний .
Атомы с одинаковым зарядом ядра составляют химический элемент .
Атомы различных элементов называются нуклидами .
Изотопы - атомы одного и того же элемента, имеющие разное нуклонне число вследствие разного количества нейтронов в ядре.
Изотопы Водорода
Название A Z N
Протий Н 1 1 0
Дейтерий D 2 1 1
Тритий T 3 1 2
Радиоактивный распад
Ядра нуклидов могут распадаться с образованием ядер других элементов, а также , или других частиц.
Спонтанный распад атомов некоторых элементов называется радіоактивніст ю, а такие вещества - радиоактивным и. Радиоактивность сопровождается испусканием элементарных частиц и электромагнитных волн - излучение г.
Уравнение ядерного распада - ядерные реакции - записываются следующим образом:

Время, за которое распаду подвергается половина атомов данного нуклида, называется периодом полураспада .
Элементы, состоящие только из радиоактивных изотопов, называются радиоактивным ы. Это элементы 61 и 84-107.
Виды радиоактивного распада
1) -розпа д. Излучаются -частицы, т.е. ядра атома Гелия . При этом нуклонне число изотопа уменьшается на 4, а заряд ядра-на 2 единицы, например:

2) -розпа д.В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электроны и антинейтрино. Во время -распада нуклонне число не изменяется, а заряд ядра увеличивается на 1, например:

3) -розпа д. Возбужденное ядро испускает лучи с очень малой длиной волны, при этом энергия ядра уменьшается, нуклонне число и заряд ядра не изменяются, например:
Строение электронных оболочек атомов элементов первых трех периодов
Электрон имеет двойственную природу: он может вести себя и как частица, и как волна. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части вокруг ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятно нахождение электрона, называется орбіталл ю.
Каждый электрон в атоме находится на определенном расстоянии от ядра согласно запаса его энергии. Электроны с более-менее одинаковой энергией формируют энергетические рівн и, или электронные слой и.
Число заполненных электронами энергетических уровней в атоме данного элемента равно номеру периода, в котором он расположен.
Число электронов на внешнем энергетическом уровне равно номеру группы, в которой расположен данный элемент.
В пределах одного энергетического уровня электроны могут отличаться формой электронной облаков и, или орбитал и. Существуют такие формы орбиталей:
s -форма:
p -форма:
Существуют также d -, f -орбитали и другие, с более сложной формой.
Электроны с одинаковой формой электронного облака образуют одноименные энергетические підрівн и:s -, p -, d -, f -подуровни.
Количество подуровней на каждом энергетическом уровне равно номеру этого уровня.
В пределах одного энергетического подуровня возможен различный распределение орбиталей в пространстве. Так, в трехмерной системе координат для s -орбитали возможно только одно положение:

для р -орбитали - три:

для d -орбитали - пять, для f -орбитали - семь.
Орбитали изображают:
s -подуровень -
p -подуровень -
d -подуровень -
Электрон на схемах обозначается стрелкой, которая указывает его спин. Под спином понимают вращения электрона вокруг своей оси. Он обозначается стрелкой: или . Два электрона на одной орбитали записываются , но не .
Более двух электронов на одной орбитали находиться не может (принцип Паули ).
Принцип наименьшего энерги й: в атоме каждый электрон располагается так, чтобы его энергия была минимальной (что соответствует его крупнейшем связи с ядром) .
Например, распределение электронов в атоме Хлора в:

Один неспаренный электрон определяет валентность Хлора в таком состоянии - I.
Во время получения дополнительной энергии (облучение, нагревание) возможно розпарування электронов (промотирования). Такое состояние атома называется збуджени м. При этом количество неспаренных электронов увеличивается и, соответственно, меняется валентность атома.
Возбужденное состояние атома Хлор в:

Соответственно к числу неспаренных электронов Хлор может иметь валентность III, V и VII.

Урок посвящен формированию представлений о сложном строении атома. Рассматривается состояние электронов в атоме, вводятся понятия «атомная орбиталь и электронное облако», формы орбиталей (s--, p-, d-орбитали). Также рассматриваются такие аспекты, как максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням и подуровням в атомах элементов первых четырех периодов, валентные электроны s-, p- и d-элементов. Приводится графическая схема строения электронных слоев атомов (электронно-графическая формула).

Тема: Строение атома. Периодический закон Д.И. Менделеева

Урок: Строение атома

В переводе с греческого языка, слово «атом» означает «неделимый». Однако, были открыты явления, которые демонстрируют возможность его деления. Это испускание рентгеновских лучей, испускание катодных лучей, явление фотоэффекта, явление радиоактивности. Электроны, протоны и нейтроны - это частицы, из которых состоит атом. Они называются субатомными частицами.

Табл. 1

Кроме протонов, в состав ядра большинства атомов входят нейтроны , не несущие никакого заряда. Как видно из табл. 1, масса нейтрона практически не отличается от массы протона. Протоны и нейтроны составляют ядро атома и называются нуклонами (nucleus - ядро). Их заряды и массы в атомных единицах массы (а.е.м.) показаны в таблице 1. При расчете массы атома массой электрона можно пренебречь.

Масса атома (массовое число) равна сумме масс, составляющих его ядро протонов и нейтронов. Массовое число обозначается буквой А . Из названия этой величины видно, что она тесно связана с округленной до целого числа атомной массой элемента. A = Z + N

Здесь A - массовое число атома (сумма протонов и нейтронов), Z - заряд ядра (число протонов в ядре), N - число нейтронов в ядре. Согласно учению об изотопах, понятию «химический элемент» можно дать такое определение:

Химическим элементом называется совокупность атомов с одинаковым зарядом ядра.

Некоторые элементы существуют в виде нескольких изотопов . «Изотопы» означает «занимающий одно и тоже место». Изотопы имеют одинаковое число протонов, но отличаются массой, т. е. числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы.

Изотопами называются разновидности атомов одного и того же химического элемента с одинаковым зарядом ядра (то есть с одинаковым числом протонов), но с разным числом нейтронов в ядре.

Изотопы отличаются друг от друга только массовым числом. Это обозначается либо верхним индексом в правом углу, либо в строчку: 12 С или С-12. Если элемент содержит несколько природных изотопов, то в периодической таблице Д.И. Менделеева указывается, его средняя атомная масса с учетом распространённости. Например, хлор содержит 2 природных изотопа 35 Cl и 37 Cl, содержание которых составляет соответственно 75% и 25%. Таким образом, атомная масса хлора будет равна:

А r (Cl )=0,75 . 35+0,25 . 37=35,5

Для тяжёлых искусственно-синтезированных атомов приводится одно значение атомной массы в квадратных скобках. Это атомная масса наиболее устойчивого изотопа данного элемента.

Основные модели строения атома

Исторически первой в 1897 году была модель атома Томсона.

Рис. 1. Модель строения атома Дж. Томсона

Английский физик Дж. Дж. Томсон предположил, что атомы состоят из положительно заряженной сферы, в которую вкраплены электроны (рис. 1). Эту модель образно называют «сливовый пудинг», булочка с изюмом (где «изюминки» - это электроны), или «арбуз» с «семечками» - электронами. Однако от этой модели отказались, т. к. были получены экспериментальные данные, противоречащие ей.

Рис. 2. Модель строения атома Э. Резерфорда

В 1910 году английский физик Эрнст Резерфорд со своими учениками Гейгером и Марсденом провели эксперимент, который дал поразительные результаты, необъяснимые с точки зрения модели Томсона. Эрнст Резерфорд доказал на опыте, что в центре атома имеется положительно заряженное ядро (рис. 2), вокруг которого, подобно планетам вокруг Солнца, вращаются электроны. Атом в целом электронейтрален, а электроны удерживаются в атоме за счет сил электростатического притяжения (кулоновских сил). Эта модель имела много противоречий и главное, не объясняла, почему электроны не падают на ядро, а также возможность поглощения и излучения им энергии.

Датский физик Н. Бор в 1913 году, взяв за основу модель атома Резерфорда, предложил модель атома, в которой электроны-частицы вращаются вокруг ядра атома примерно так же, как планеты обращаются вокруг Солнца.

Рис. 3. Планетарная модель Н. Бора

Бор предположил, что электроны в атоме могут устойчиво существовать только на орбитах, удаленных от ядра на строго определенные расстояния. Эти орбиты он назвал стационарными. Вне стационарных орбит электрон существовать не может. Почему это так, Бор в то время объяснить не мог. Но он показал, что такая модель (рис. 3) позволяет объяснить многие экспериментальные факты.

В настоящее время для описания строения атома используется квантовая механика. Это наука, главным аспектом в которой является то, что электрон обладает свойствами частицы и волны одновременно, т. е. корпускулярно-волновым дуализмом. Согласно квантовой механике, область пространства, в которой вероятность нахождения электрона наибольшая, называется орбиталью. Чем дальше электрон находится от ядра, тем меньше его энергия взаимодействия с ядром. Электроны с близкими энергиями образуют энергетический уровень. Число энергетических уровней равно номеру периода , в котором находится данный элемент в таблице Д.И. Менделеева. Существуют различные формы атомных орбиталей. (Рис. 4). d-орбиталь и f-орбиталь имеют более сложную форму.

Рис. 4. Формы атомных орбиталей

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме размещаются так, чтобы их энергия была минимальной. Чем дальше электрон находится от ядра, тем больше орбиталей и тем сложнее они по форме. На каждом уровне и подуровне может помещаться только определенное количество электронов. Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей .

На первом энергетическом уровне, наиболее близком к ядру, может существовать одна сферическая орбиталь (1 s ). На втором энергетическом уровне - сферическая орбиталь, большая по размеру и три р-орбитали: 2 s 2 ppp . На третьем уровне: 3 s 3 ppp 3 ddddd .

Кроме движения вокруг ядра, электроны обладают еще движением, которое можно представить, как их движение вокруг собственной оси. Это вращение называется спином (в пер. с англ. «веретено»). На одной орбитали могут находиться лишь два электрона, обладающих противоположными (антипараллельными) спинами.

Максимальное число электронов на энергетическом уровне определяется по формуле N =2 n 2.

Где n - главное квантовое число (номер энергетического уровня). См. табл. 2

Табл. 2

В зависимости от того, на какой орбитали находится последний электрон, различают s -, p -, d -элементы. Элементы главных подгрупп относятся к s -, p -элементам. В побочных подгруппах находятся d -элементы

Графическая схема строения электронных слоев атомов (электронно-графическая формула).

Для описания расположения электронов на атомных орбиталях используют электронную конфигурацию. Для её написания в строчку пишутся орбитали в условных обозначениях (s- -, p -, d-, f -орбитали), а перед ними - числа, обозначающие номер энергетического уровня. Чем больше число, тем дальше электрон находится от ядра. В верхнем регистре, над обозначением орбитали, пишется количество электронов, находящихся на данной орбитали (Рис. 5).

Рис. 5

Графически распределение электронов на атомных орбиталях можно представить в виде ячеек. Каждая ячейка соответствует одной орбитали. Для р-орбитали таких ячеек будет три, для d-орбитали - пять, для f-орбитали - семь. В одной ячейке может находиться 1 или 2 электрона. Согласно правилу Гунда , электроны распределяются на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одному, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Такие электроны называют спаренными. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы.

См. рис. 6 для атома 7 N.

Рис. 6

Электронная конфигурация атома скандия

21 Sc : 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 3 d 1

Электроны внешнего энергетического уровня называются валентными. 21 Sc относится к d -элементам.

Подведение итога урока

На уроке было рассмотрено строение атома, состояние электронов в атоме, введено понятие «атомная орбиталь и электронное облако». Учащиеся узнали, что такое форма орбиталей (s -, p -, d -орбитали), каково максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням, что такое s -, p - и d -элементы. Приведена графическая схема строения электронных слоев атомов (электронно-графическая формула).

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. - К.: ИЦ «Академия», 2008. - 240 с.: ил.

3. А.В. Мануйлов, В.И. Родионов. Основы химии. Интернет-учебник.

Домашнее задание

1. №№5-7 (с. 22) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Напишите электронные формулы для следующих элементов: 6 C, 12 Mg, 16 S, 21 Sc.

3. Элементы имеют следующие электронные формулы: а) 1s 2 2s 2 2p 4 .б) 1s 2 2s 2 2p 6 3s 2 3p 1 . в) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 . Какие это элементы?

Так как при химических реакциях ядра реагирующих атомов остаются без изменений (за исключением радиоактивных превращений), то химические свойства атомов зависят от строения их электронных оболочек. Теория электронного строения атома построена на основе аппарата квантовой механики. Так, структура энергетических уровней атома может быть получена на основе квантовомеханических расчетов вероятностей нахождения электронов в пространстве вокруг атомного ядра (рис. 4.5 ).

Рис. 4.5 . Схема подразделения энергетических уровней на подуровни

Основы теории электронного строения атома сводятся к следующим положениям: состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами: главным квантовым числом n = 1, 2, 3, ; орбитальным (азимутальным)l=0,1,2, n–1 ;  магнитнымm l = –l, –1,0,1, l ;  спиновымm s = -1/2, 1/2 .

Согласно принципу Паули , в одном и том же атоме не может быть двух электронов, обладающих одинаковой совокупностью четырех квантовых чиселn, l, m l , m s ; совокупности электронов с одинаковыми главными квантовыми числами n образуют электронные слои, или энергетические уровни атома, нумеруемые от ядра и обозначаемые какK, L, M, N, O, P, Q ,  причем в энергетическом слое с данным значениемn могут находиться не более, чем2n 2 электронов. Совокупности электронов с одинаковыми квантовыми числамиn иl ,  образуют подуровни, обозначаемые по мере удаления их от ядра какs, p, d, f .

Вероятностное нахождение положения электрона в пространстве вокруг атомного ядра соответствует принципу неопределенностей Гейзенберга. По квантовомеханическим представлениям, электрон в атоме не имеет определенной траектории движения и может находиться в любой части пространства вокруг ядра, а различные его положения рассматриваются как электронное облако с определенной плотностью отрицательного заряда. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью . В нем заключено порядка 90% электронного облака. Каждому подуровню1s, 2s, 2p и т.д. соответствует определенное количество орбиталей определенной формы. Например,1s - и2s- орбитали имеют сферическую форму, а2p -орбитали (2p x , 2p y , 2p z -орбитали) ориентированы во взаимно перпендикулярных направлениях и имеют форму гантели (рис. 4.6 ).

Рис. 4.6 . Форма и ориентация электронных орбиталей.

При химических реакциях атомное ядро не претерпевает изменений, изменяются лишь электронные оболочки атомов, строением которых объясняются многие свойства химических элементов. На основе теории электронного строения атома был установлен глубокий физический смысл периодического закона химических элементов Менделеева и создана теория химической связи.

Теоретическое обоснование периодической системы химических элементов включает в себя данные о строении атома, подтверждающие существование связи между периодичностью изменения свойств химических элементов и периодическим повторением сходных типов электронных конфигураций их атомов.

В свете учения о строении атома становится обоснованным разделение Менделеевым всех элементов на семь периодов: номер периода соответствует числу энергетических уровней атомов, заполняемых электронами. В малых периодах с ростом положительных заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 в первом периоде, и от 1 до 8 во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого) находится щелочной металл, затем наблюдается постепенное ослабление металлических свойств и усиление неметаллических. Эта закономерность прослеживается для элементов второго периода в таблице 4.2.

Таблица 4.2.

В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что и объясняет более сложное изменение свойств элементов по сравнению с элементами малых периодов.

Одинаковый характер свойств химических элементов в подгруппах объясняется сходным строением внешнего энергетического уровня, как это показано в табл. 4.3 , иллюстрирующей последовательность заполнения электронами энергетических уровней для подгрупп щелочных металлов.

Таблица 4.3.

Номер группы, как правило, указывает на число электронов в атоме, которые могут участвовать в образовании химических связей. В этом заключается физический смысл номера группы. В четырех местах периодической системы элементы расположены не в порядке возрастания атомных масс:  Ar иK ,Co иNi ,T e иI ,Th иPa . Эти отступления считались недостатками периодической системы химических элементов. Учение о строении атома объяснило указанные отступления. Опытное определение зарядов ядер показало, что расположение этих элементов соответствует возрастанию зарядов их ядер. Кроме того, опытное определение зарядов ядер атомов дало возможность определить число элементов между водородом и ураном, а также число лантаноидов. Ныне все места в периодической системе заполнены в промежутке отZ=1 доZ=114 , однако периодическая система не закончена, возможно открытие новых трансурановых элементов.

Периодическая система элементов Менделеева. Строение атома.

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА - классификация хим. элементов, созданная рус. учёным Д. И. Менделеевым на основе открытого им (в 1869) периодич. закона.

Совр. формулировка периодич. закона: св-ва элементов (проявляющиеся в простых в-вах и соединениях) находятся в периодич. зависимости от заряда ядер их атомов.

Заряд атомного ядра Z равняется атомному (порядковому) номеру хим. элемента в П. с. э. М. Если расположить все элементы в порядке возрастания Z. (водород Н, Z = 1; гелий Не, Z = 2; литий Li, Z == 3; бериллий Be, Z = 4 и т. д.), то они образуют 7периодов. В каждом из этих периодов наблюдается закономерное изменение св-в элементов, от первого элемента периода (щелочного металла) до последнего (благородного газа). Первый период содержит 2 элемента, 2-й и 3-й - по 8 элементов, 4-й и 5-й - по 18, 6-й - 32. В 7-м периоде известно 19 элементов. 2-й и 3-й периоды принято называть малыми, все последующие - большими. Если расположить периоды в виде горизонтальных рядов, то в получ. таблице обнаружатся 8 вертик. столбцов; это группы элементов, аналогичных по своим св-вам.

Св-ва элементов внутри групп также закономерно изменяются в зависимости от увеличения Z. Напр., в группе Li - Na - К - Rb - Cs - Fr возрастает хим. активность металла, усиливается осн. характер оксидов и гидроксидов.

Из теории строения атома следует, что периодичность св-в элементов обусловлена законами формирования электронных оболочек вокруг ядра. По мере увеличения Z элемента происходит усложнение атома - возрастает число электронов, окружающих ядро, и наступает момент, когда заканчивается заполнение одной электронной оболочки и начинается формирование следующей, наружной. В системе Менделеева это и совпадает с началом нового периода. Элементы с 1, 2, 3 и т. д. электронами в новой оболочке похожи по св-вам на те элементы, к-рые тоже имели 1, 2, 3 и т. д. наружных электрона, хотя число их внутр. электронных оболочек было на одну (или на неск.) меньше: Na похож на Li (один внеш. электрон), Mg - на Be (2 внеш. электрона); А1 - на В (3 внеш. электрона) и т. д. С положением элемента в П. с. э. М. связаны его хим. и мн. физ. св-ва.

Предложено множество (ок. 1000) вариантов графич. изображения П. с. э. М. Наиболее распространены 2 варианта П. с. э. М. - короткая и длинная таблицы; к.-л. принципиального различия между ними нет. В приложении помещён один из вариантов короткой таблицы. В таблице номера периодов приведены в первой колонке (обозначены арабскими цифрами 1 - 7). Номера групп обозначены сверху римскими цифрами I - VIII. Каждая группа делится на две подгруппы - а и б. Совокупность элементов, возглавляемых элементами малых периодов, иногда наз. главными подгрупп а-м и (Li возглавляет подгруппу щелочных металлов. F - галогенов, Не - инертных газов и т. д.). В этом случае остальные подгруппы элементов больших периодов наз. побочными.

Элементы с Z = 58 - 71 благодаря особой близости строения их атомов и сходства их хим. св-в составляют семейство лантаноидов, входящее в III группу, но для удобства помещаемое внизу таблицы. Элементы с Z = 90 - 103 по тем же причинам часто выделяют в семейство актиноидов. За ними следуют элемент с Z = 104 - курчатовий и элемент с Z = 105 (см. Нильсборий). В июле 1974 сов. физики сообщили об открытии элемента с Z = 106, а в янв. 1976 - элемента с Z = 107. Позднее синтезированы элементы с Z = 108 и 109. Ниж. граница П. с. э. М. известна - она задана водородом, т. к. не может быть элемента с зарядом ядра меньше единицы. Вопрос же о том, какова верхняя граница П. с. э. М., т. е. до какого предельного значения может дойти искусств. синтез элементов, остаётся нерешённым. (Тяжёлые ядра неустойчивы, поэтому америций с Z = 95 и последующие элементы не обнаруживают в природе, а получают в ядерных реакциях; однако в области более далёких трансурановых элементов ожидается появление т. н. островов устойчивости, в частности для Z = 114.) В искусств. синтезе новых элементов периодич. закон и П. с. э. М. играют первостепенную роль. Закон и система Менделеева принадлежат к числу важнейших обобщений естествознания, лежат в основе совр. учения о строении в-ва.

Электронное строение атома.

В этом и в следующем параграфах рассказывается о моделях электронной оболочки атома. Важно понимать, что речь идет именно о моделях . Реальные атомы, конечно, более сложны и мы пока знаем о них далеко не все. Однако современная теоретическая модель электронного строения атома позволяет успешно объяснить и даже предсказать многие свойства химических элементов, поэтому широко используется в естественных науках.

Для начала рассмотрим более подробно "планетарную" модель, которую предложил Н. Бор (рис. 2-3 в).

Рис. 2-3 в. "Планетарная" модель Бора.

Датский физик Н. Бор в 1913 году предложил модель атома, в которой электроны-частицы вращаются вокруг ядра атома примерно так же, как планеты обращаются вокруг Солнца. Бор предположил, что электроны в атоме могут устойчиво существовать только на орбитах, удаленных от ядра на строго определенные расстояния. Эти орбиты он назвал стационарными. Вне стационарных орбит электрон существовать не может. Почему это так, Бор в то время объяснить не мог. Но он показал, что такая модель позволяет объяснить многие экспериментальные факты (подробнее об этом рассказывается в параграфе 2.7).

Электронные орбиты в модели Бора обозначаются целыми числами 1, 2, 3, … n , начиная от ближайшей к ядру. В дальнейшем мы будем называть такие орбиты уровнями . Для описания электронного строения атома водорода достаточно одних только уровней. Но в более сложных атомах, как выяснилось, уровни состоят из близких по энергии подуровней . Например, 2-й уровень состоит из двух подуровней (2s и 2p). Третий уровень состоит из 3-х подуровней (3s, 3p и 3d), как показано на рис. 2-6. Четвертый уровень (он не поместился на рисунке) состоит из подуровней 4s, 4p, 4d, 4f. В параграфе 2.7 мы расскажем, откуда взялись именно такие названия подуровней и о физических опытах, которые позволили "увидеть" электронные уровни и подуровни в атомах.

Рис. 2-6. Модель Бора для атомов более сложных, чем атом водорода. Рисунок сделан не в масштабе - на самом деле подуровни одного уровня находятся гораздо ближе друг к другу.

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме заселяют ближайшие к ядру уровни и подуровни, потому что в этом случае их энергия меньше, чем если бы они заселяли более удаленные уровни. На каждом уровне и подуровне может помещаться только определенное количество электронов.

Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей (на рис. 2-6 они не показаны). Образно говоря, если электронное облако атома сравнить с городом или улицей, где "живут" все электроны данного атома, то уровень можно сравнить с домом, подуровень - с квартирой, а орбиталь - с комнатой для электронов. Все орбитали какого-нибудь подуровня имеют одинаковую энергию. На s-подуровне всего одна "комната"-орбиталь. На p-подуровне 3 орбитали, на d-подуровне 5, а на f-подуровне - целых 7 орбиталей. В каждой "комнате"-орбитали могут "жить" один или два электрона. Запрещение электронам находиться более чем по двое на одной орбитали называют запретом Паули - по имени ученого, который выяснил эту важную особенность строения атома. Каждый электрон в атоме имеет свой "адрес", который записывается набором четырех чисел, называемых "квантовыми". О квантовых числах будет подробно рассказано в параграфе 2.7. Здесь мы упомянем лишь о главном квантовом числе n (см. рис. 2-6), которое в "адресе" электрона указывает номер уровня, на котором этот электрон существует.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20