Химические вещества относятся высоко опасным. Химическая опасность. Где должны храниться и в чем опасные вещества

Советский ученый в области физической химии, доктор физико-математических наук, профессор, лауреат Ленинской премии, академик.


Родился в Москве в семье священника, репрессированного в 1930-х годах, и учительницы. В 1941-1943 годах - в эвакуации в Горьковской области. В 1943-1944 годах работал и учился, в 1945 году вернулся в 10-й класс московской средней школы № 110, досдав экзамены экстерном.

Занял первое место на Общемосковской математической олимпиаде в 1945 году, в том же году окончил школу. Ему, первому в СССР, была вручена золотая медаль «За отличные успехи и примерное поведение» и аттестат зрелости № 000001. Он мог бы не получить медаль из-за своего происхождения, если бы не директор школы И. К. Новиков.

В 1950 году с отличием окончил физический факультет МГУ по специальности «физика». В 1951-1956 годах служил офицером в Советской Армии. С сентября 1953 года преподавал радиолокацию на военной кафедре МГУ, затем коллоидную химию. В 1973-1994 годах - заведующий кафедрой коллоидной химии МГУ. Одновременно с 1956 года работал в институте физической химии Академии наук СССР (ныне Институт физической химии и электрохимии имени А. Н. Фрумкина), с 1967 там же заведовал лабораторией физико-химической механики.

В 1958 году защитил диссертацию на соискание ученой степени кандидата физико-математических наук (научные руководители - П. А. Ребиндер, В. Н. Рожанский) в Институте физической химии, в 1962 году - в МГУ на соискание степени доктора физико-математических наук.

С 1994 года Е. Д. Щукин живет в Балтиморе, читает курсы коллоидной химии и физико-химической механики в Университете Джонса Гопкинса. Одновременно остаётся профессором кафедры коллоидной химии химического факультета МГУ.

Научная деятельность

К 1964 году Е. Д. Щукиным создана теория прочности дисперсных пористых структур, разработаны методы повышения долговечности промышленных катализаторов и сорбентов. В 1969-1975 годах разработаны методы применения поверхностно-активных веществ для стабилизации золей, эмульсий и пен. В 1990 году открыл каталитическое ускорение спекания порошков.

Е. Д. Щукин выполнял экспериментальные и теоретические исследования в области физической и коллоидной химии дисперсных систем, поверхностных явлений и поверхностно-активных веществ. Им изучены механизмы действия поверхностно-активных веществ на различных межфазных границах, получения и регулирования устойчивости дисперсных систем (золей, гелей, эмульсий, пен, аэрозолей). Изучены такие явления, как адгезия, спекание, гидратационное твердение, переход «золь-гель», охрупчивание под действием жидких металлов, износ, смазывающее действие и др., а также их молекулярные механизмы. Создано учение о взаимодействии частиц и структурообразовании в дисперсных системах, разработаны коллоидно-химические методы для защиты окружающей среды. В сферу интересов академика Е. Д. Щукина входят физико-химия поверхностных явлений в твердых телах, теория дислокаций, влияние поверхностно-активной среды на механические свойства материалов, особенно в тонких приповерхностных слоях. Кроме того, выполнены практические приложения исследований: повышение прочности и долговечности катализаторов, минеральных вяжущих и керамики, обработка высокотвердых материалов, бурение твердых горных пород.

Е. Д. Щукин продолжил и развил работы П. А. Ребиндера в области устойчивости и самопроизвольного диспергирования, изучил молекулярные механизмы действия поверхностно-активных веществ, построил физико-химическую теорию структурообразования и прочности дисперсных структур. Впервые осуществил компьютерное моделирование «эффекта Ребиндера».

Е. Д. Щукин создал общий курс «Коллоидная химия», специальный курс «Физико-химическая механика дисперсных систем и материалов», являлся руководителем более 40 защищенных кандидатских диссертаций.

В области педагогических исследований работы Е. Д. Щукина посвящены значению междисциплинарных областей науки и их технических приложений в системе знаний и развитие методов их отражения в предметах естественно-математического цикла.

Е. Д. Щукин в разные годы являлся членом специализированных советов химического факультета МГУ, Института физической химии РАH, Института Металлургии АH СССР, Института содержания и методов обучения РАО, членом Национального Комитета российских химиков, ВАК СССР, членом редакционных коллегий журналов: «Коллоидный журнал», «Трение и износ», «Физика в школе», «Физико-химическая механика материалов», «Физика и химия обработки материалов». В настоящее время яляется членом редакционных коллегий международных научных журналов «Journal of Materials Science», «Journal of Dispersion Science and Technology», «Colloids and Surfaces», «Colloid & Interface Science», «Advances in the Mechanics and Physics of Surfaces», «Zeitschrift für Physikalische Chemie».

Премии и звания

4 марта 1965 года Е. Д. Щукин избран член-корреспондентом АПН РСФСР, со 2 февраля 1968 года - член-корреспондент АПН СССР. 23 мая 1985 года избран академиком АПН СССР, с 7 апреля 1993 года - действительный член РАО, отделение общего среднего образования. Е. Д. Щукин - академик Российской инженерной академии (с 1990 года), Российской Академии естественных наук (с 1990 года), Национальной инженерной академии США (с 1984 года), Королевской Шведской Академии инженерных наук (с 1988 года).

В 1995 году присвоено звание Почетного профессора МГУ. В 1972 году присуждена Ломоносовская премия МГУ, в 1988 году - Ленинская премия за работы в области физико-химической механики, в 1988 году - премия имени П. А. Ребиндера. В 1986 году награжден орденом «Знак Почёта».

Химические опасности. Аварии на химически опасных объектах.

Химически опасный объект - опасный производственный объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества, при аварии на котором или при разрушении которого может произойти гибель или химическое поражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.

К химически опасным объектам относятся:

– предприятия химической и нефтеперерабатывающей промышленности;

– предприятия пищевой, мясомолочной промышленности, хладокомбинаты, продовольственные базы, имеющие холодильные установки, в которых в качестве хладагента используется аммиак

– водоочистные и целлюлозно-бумажные предприятия, на которых используется хлор в качестве дезинфицирующего и отбеливающего средства – базы и склады с ядохимикатами;

– железнодорожные станции

– любой транспорт, перевозящий химически опасные грузы;

– свалки и места захоронения отходов химической промышленности.

Классификация аварий на ХОО

частная – последствия ограничиваются одной установкой, цехом;

объектовая – последствия ограничиваются предприятием, объектом;

местная – последствия ограничиваются городом, районом, областью;

региональная – последствия распространяются на несколько субъектов РФ или регионов;

глобальная – последствия захватывают несколько регионов и сопредельные страны.

Классификации:

по степени воздействия на организм человека (1 – 4 классы опасности):

1 - вещества чрезвычайно опасные; 2 - вещества высоко опасные;

3 - вещества умеренно опасные; 4 - вещества малоопасные;

4 степени химической опасности:

1-я степень - в зону возможного химического заражения попадает свыше 75 тысяч человек;

2-я степень - в зону возможного химического заражения попадает 40-75 тысяч человек;

3-я степень - в зону возможного химического заражения попадает менее 40 тысяч человек;

4-я степень - зона возможного химического заражения сильно действующие ядовитые вещества находится в пределах санитарно-защитной зоны объекта.

Классификация опасных химических объектов .

Критерии

1 класс

2 класс

3 класс

4 класс

Количество населения, которое будет охвачено зоной заражения при аварии, тыс. чел.

Радиус санитарно-защитной зоны вокруг объекта, м

Процент населения, которое окажется в зоне возможного химического заражения

Опасные химические вещества могут вызвать ряд специфических эффектов, или рисков.

1. Эмбриотропный (тератогенный) . Он проявляется в нарушениях в закладке внутренних органов плода, что вызывает появление врожденных уродств; возможны внутриутробная гибель плода, токсикозы беременности, самопроизвольные выкидыши.

2. Канцерогенный (онкогенный) эффект это способность активизировать деятельность раковых клеток и вызывать злокачественные заболевания; это зависит от дозы вещества, времени действия, от силы его канцерогенного влияния и может проявиться даже через много лет. Показатель распространенности онкозаболеваний является своеобразным индикатором вредного воздействия загрязнения ОС на организм.

3. Генотоксический эффект это способность вещества вызывать мутации генов соматических клеток, что увеличивает риск развития онкологической патологии. При повреждении генетического аппарата зародышевых клеток возникшие изменения наследуются, возрастает риск развития врожденных пороков развития (ВПР) и наследственных болезней.

Частота ВПР – это основной критерий оценки влияния химических загрязнений ОС на организм человека.

4. Иммунопатогенный эффект сказывается в подавлении иммунитета. Это приводит к снижению общей сопротивляемости, к развитию иммунопатологических процессов, и, в первую очередь, болезней верхних дыхательных путей и легких.

5. Репродуктивный риск, или нарушение репродуктивных функций организма (репродуктивного здоровья). Это химически обусловленные нарушения гормональных регуляций и полового развития.

Оценка репродуктивного здоровья женщины проводится по таким показателям, как способность к зачатию, первичное и вторичное бесплодие, самопроизвольные выкидыши, нарушения и осложнения течения беременности и родов (угроза прерывания, токсикоз 2-й половины, преждевременное отхождение околоплодных вод, преждевременные роды), слабость родовой деятельности, стремительные роды, внутриутробная и младенческая смертность, нарушения состояния плода и новорожденных (малый вес плода, рождение в асфиксии) и т.д.

Показателями нарушения репродуктивного здоровья мужчины являются нарушения сперматогенеза и функций предстательной железы.

Показатели репродуктивного здоровья все чаще рассматриваются сейчас в качестве одного из основных чувствительных критериев степени химического загрязнения ОС.

6. Ферментопатический эффект подавление активности ферментных систем (детоксикации, антиоксидантной защиты).

7. Метаболические нарушения (нарушения обмена веществ) – наиболее частые проявления действия химических загрязнителей. Они разнообразны, затрагивают биоэнергетику, окислительно-восстановительные процессы; химические вещества могут действовать как антивитамины или оказывают гормоноподобный эффект.

8 . Аллергенный – эффект, который проявляется в учащении патологии аллергического характера (бронхиальная астма, аллергодерматозы и т.д.).

Химическая авария – это нарушение технологических процессов на производстве, повреждение трубопроводов, емкостей, хранилищ, транспортных средств, приводящее к выбросу ХОВ в атмосферу в количествах, представляющих опасность для жизни и здоровья людей и функционирования биосферы.

Причины аварий на химически опасных объектах

– износ производственных фондов, несвоевременный или плохого качества ремонт оборудования;

– нарушение технологических процессов;

– нарушение правил эксплуатации производственных систем и отдельных их составляющих;

– нарушение правил хранения и транспортировки ОХВ;

– неисправность транспортных средств;

– несоблюдение мер безопасной эксплуатации машин, механизмов и т.д.;

– внезапный выход из строя механизмов, агрегатов, трубопроводов;

– ошибки, допущенные при проектировании, строительстве промышленных объектов, при изготовлении оборудования и т.д.;

– низкая трудовая дисциплина работников объекта;

– разгерметизация емкостей хранения ОХВ;

– превышение норм запасов ОХВ;

– стихийное бедствие;

– диверсионный или террористический акт, военный конфликт.

При авариях на ХОО с выбросом АХОВ происходит химическое заражение окружающей среды с различной степенью концентрации АХОВ, продолжительностью от нескольких часов до нескольких суток, в зависимости от конкретных условий – состояния погоды, времени года, местности, а также характера применяемых мер по ликвидации аварии. При этом образуется зона химического заражения, представляющая собой территорию, в пределах которой создается опасность химического поражения. Она включает в себя очаг химического заражения и зону распространения зараженного воздуха с опасными концентрациями АХОВ (при неоседающих АХОВ), а также зону заражения территории (при наличии оседающих примесей). Внешние границы зоны химического заражения соответствуют пороговому значению токсодозы АХОВ при ингаляционном воздействии на человека. Среди ЧС техногенного характера аварии на химически опасных объектах занимают одно из важнейших мест. Порой потери при таких авариях могут быть сравнимы с потерями от применения ядерного оружия.

Сегодня в мире происходят тысячи химических аварий при производстве, хранении, транспортировке аварийно химически опасных веществ (АХОВ). Наибольшее число аварий в мире и в России происходит на предприятиях, производящих или хранящих хлор, аммиак, минеральные удобрения, гербициды, продукты органического и нефтеорганического синтеза.

Среди наиболее крупных химических аварий последних лет в мире можно отметить следующие.

В 1976 г. на химическом заводе итальянского города Севезо произошла авария, в результате которой территория площадью более 18 км оказалась зараженной диоксином. Пострадали более 1000 человек, отмечалась массовая гибель животных. Ликвидация последствий аварии продолжалась более года.

Наверное, самой крупной аварией на химическом производстве за всю историю развития мировой промышленности оказалась катастрофа в г. Бхопале (Индия, 1984 г.), из-за которой погибло 3150 человек, а более 200 тысяч получили поражения различной степени тяжести.

В августе 1991 года в Мексике во время железнодорожной катастрофы с рельсов сошли 32 цистерны с жидким хлором. В атмосферу было выброшено около 300 тонн хлора. В зоне распространения зараженного воздуха получили поражения различной степени тяжести около 500 человек, из них 17 человек погибли на месте. Из ближайших населенных пунктов было эвакуировано свыше тысячи жителей.

Вопрос 2. Аварийно химически опасные вещества. Классификация.

Аварийно химически опасное вещество (АХОВ) - это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах).

Аварийно химически опасное вещества

    ХЛОР. Представляет собой зеленовато-жёлтый газ с резким раздражающим запахом. При обычном давлении он затвердевает при -101 °С и сжижается при -34°С. Хлор примерно в 2,5 раза тяжелее воздуха и вследствие этого скапливается в низких участках местности, подвалах, колодцах, тоннелях. Хлор растворим в воде: образующийся жёлтый раствор часто называют хлорной водой. Химическая активность его очень велика - он образует соединения почти со всеми химическими элементами. Основной промышленный метод получения - электролиз концентрированного раствора хлористого натрия. Ежегодное потребление хлора в мире исчисляется десятками миллионов тонн. Используется он в производстве хлорорганических соединений (например, винилхлорида, хлоропренового каучука, дихлорэтана, перхлорэтилена, хлорбензола), неорганических хлоридов. В больших количествах применяется для отбеливания тканей и бумажной массы, обеззараживания питьевой воды, как дезинфицирующее средство, используется в производстве каучука, хлорной извести и синтетической пленки. Хлор под давлением сжижается уже при обычных температурах. Хранят и перевозят его в стальных баллонах и железнодорожных цистернах под давлением. При выходе в атмосферу дымит, загрязняет водоемы. В первую мировую войну применялся в качестве отравляющего вещества удушающего действия. Поражает легкие, раздражает слизистые и кожу. Первые признаки отравления - резкая загрудинная боль, резь в глазах, слезотечение, сухой кашель, рвота, нарушение координации, одышка. Соприкосновение с парами хлора вызывает ожоги слизистой оболочки дыхательных путей, глаз, кожи. Оказание первой помощи: как можно быстрее вынести пострадавшего из очага поражения, дать дышать кислородом, промыть участки кожи, куда попал хлор, 2% раствором соды, в глаза - 0,5% раствор дионина по 2-3 капли, затем 13 капли вазелинового мала. При кашле - дионин. Для предотвращения отека легких дают дышать парами спирта (кислород перед вдыханием пропускают через спирт), укрывают, согревают. Транспортировка только в лежачем положении.

    АММИАК . Аммиак представляет собой бесцветный газ с характерным резким запахом (нашатырного спирта). При обычном давлении затвердевает при температуре -78°С и сжижается при - 34°С. Плотность газообразного аммиака при нормальных условиях составляет примерно 0,6, то есть он легче воздуха. С воздухом образует взрывоопасные смеси в пределах 15-28 объемных процентов аммиака. Вызывает поражение дыхательных путей. Признаки: насморк, кашель, затрудненное дыхание, удушье, учащается сердцебиение, нарастает частота пульса. Пары сильно раздражают слизистые оболочки и кожные покровы, вызывают жжение, покраснение и зуд кожи, резь в глазах, слезотечение. При соприкосновении жидкого аммиака и его растворов с кожей возникает обморожение, жжение, возможен ожог с пузырями, изъязвления. Если поражение аммиаком все же произошло, следует немедленно вынести пострадавшего на свежий воздух. Транспортировать надо в лежачем положении. Необходимо обеспечить тепло и покой, дать увлажненный кислород. При отеке легких искусственное дыхание делать нельзя. Наличие и концентрацию этого газа в воздухе позволяет определить универсальный газоанализатор УГ-2. В случае аварии необходимо опасную зону изолировать, удалить людей и не допускать никого без средств защиты органов дыхания и кожи. Около зоны следует находиться с наветренной стороны. Место разлива нейтрализуют слабым раствором кислоты, промывают большим количеством воды. Если произошла утечка газообразного аммиака, то с помощью поливо-моечных машин, авторазливочных станций, пожарных машин распыляют воду, чтобы поглотить пары.

    Диоксины - весьма распространенный яд, образующийся как побочный продукт или продукт распада в деревообрабатывающей, бумажной, металлугической промышленности. Образуется при хлорировании питьевой воды и в процессе очистки сточных вод, при сжигании промышленного и бытового мусора, в сельском хозяйстве при применении гербицидов, пестицидов и дефолиантов.Диоксины очень стабильны, долго распадаются в природе, прекрасно концентрируются в почве, растениях, водоемах, рыбе, передаваясь по пищевой цепочке, увеличивая концентрацию. Больше всего диоксинов в своем ежедневии человек получает с пищевыми продуктами: мясо, молоко, рыба, корнеплоды, а также с воздухом и водой. В организм человека диоксины могут попадать разными путями: через желудочно-кишечный тракт с водой, через легкие (вдыхание дыма при пожарах, особенно при горении химических веществ - полиетилен, хлорвинил и т.д.), через кожу. проявляется в поражении:

    желудочно-кишечного тракта - боли в области желудка, тошнота, рвота, потеря аппетита

    печени - увеличение размеров, изменение активности ее ферментов, увеличением глюкозы, холестерина в крови

    нервной системы - боли по ходу нервов, полиневрит, сонливость, депрессия, нарушение восприятия вкуса, запаха, звуков

    легких - кашель, мокрота, одышка

    крови - анемия

    кожи - нарушение деятельности сальных желез, дерматит, угри на шее и лице, не поддающиеся лечению, в последующем - рубцы, пигментация кожи век, за ушами.

Первая помощь при остром отравлении: промыть желудок чистой (!) водой и обратиться к врачу.

    Оксид углерода является продуктом неполного сгорания углерода. Он образуется в качестве примеси везде, где происходит горение углеродсодержащего топлива (топка печей, эксплуатация двигателей внутреннего сгорания и т.д.). Отравления оксидом углерода происходят:

При вдыхании значительных количеств угарного газа, содержащегося в выхлопных газах автотранспорта; у лиц, находящихся длительное время в закрытых гаражах и в автомобиле с работающим двигателем;

В быту в помещениях с неисправным печным отоплением, в котельных бытовых и производственных зданий;

При пожарах у лиц, находящихся в горящих, задымленных помещениях (задымленные комнаты и квартиры), в вагонах транспорта и лифтах.

Симптомы: первыми признаками являются головная боль и мышечная слабость, причем при самом незначительном физическом напряжении возникает резкая одышка и может развиться потеря сознания вследствие коллапса. В случаях легкого отравления в течение 1-2 дней наступает полное выздоровление без лечения. Во время выздоровления больного могут беспокоить боли в мышцах, понос. При отравлении средней тяжести описанные изменения более выражены и постоянны. Обязательно имеет место потеря сознания с угнетением рефлексов. При этом дыхание, как правило, не угнетено, обычно учащено, кожа лица и слизистые оболочки багрово-алые, кровяное давление понижено, может быть коллапс. Для тяжелого отравления характерным является стойкая и длительная, до нескольких суток, потеря сознания с опасными для жизни нарушениями дыхания.Смерть в периоде комы наступает от остановки дыхания. Если же больной пережил острый период, то у него на много месяцев остаются последствия изменений органов: нарушения мозговых функций - в первую очередь логической памяти, очаговые изменения мозга вследствие кровоизлияний и тромбозов, нарушения трофики (пролежни и гангрены), а также сердечной деятельности.

Первая помощь:

    В первую очередь необходимо вынести пострадавшего из зоны, где присутствует угарный газ. Обязательно обеспечить ему приток свежего воздуха: освободить от тесной одежды, открыть двери, окна, включить вентилятор и так далее.

    Если есть возможность, то дать больному подышать кислородом.

    На грудь и голову больного следует положить холодный компресс. Также полезно протирать ему лицо, виски и грудь разведённым в воде уксусом.

    Если пострадавший без сознания, то нужно давать ему вдыхать нашатырный спирт, через каждые пять минут.

    При остановке сердца и отсутствии дыхания необходимо проводить реанимационные мероприятия: правильно провести искусственное дыхание и сделать непрямой массаж сердца.

    Обязательно вызовите скорую помощь.

Фосфорорганические соединения - вещества, в молекулах которых имеется фосфор-углеродная связь, т. е. атом фосфора, непосредственно связанный с атомом углерода. Скрытый период действия - от нескольких минут до нескольких часов. Первыми признаками отравления являются головные боли, головокружения, общая слабость, сонливость, сменяющаяся бессонницей, тошнота, рвота, схваткообразные боли в животе, повышение слюно- и потоотделения, сужение зрачков (миоз), неясность зрения, нистагм, снижение сухожильных рефлексов. В дальнейшем присоединяются нарушения дыхания (кашель, одышка, астмоидные приступы, при выслушивании обильные сухие и влажные хрипы), подергивания в мышцах, неустойчивая походка, возможно увеличение и болезненность печени, лейкоцитоз, лимфопения, эозинопения, нейтрофильный сдвиг влево. При тяжелых острых отравлениях наступает потеря сознания, судороги мышц всего тела, значительно выражены расстройства дыхания, напоминающие отек легких (клокочущее дыхание, обильные влажные хрипы, цианоз губ), коматозное состояние.

Первая помощь и лечение . При острых отравлениях - удалить пострадавшего из отравленной зоны на свежий воздух для прекращения поступления яда в организм через дыхательные пути. Снять загрязненную одежду. Удалить яд с кожных покровов 10-15% раствором аммиака или 2-5% раствором гидрокарбоната натрия (сода) с последующей обработкой теплой водой с мылом. При попадании ФОС в глаза - промыть 2% раствором гидрокарбоната натрия. При попадании в желудок произвести обильное промывание теплой водой или 2% раствором гидрокарбоната натрия, после чего дать солевое слабительное. При появлении первых признаков интоксикации проводится антидотная терапия 0,1% раствором атропина: при легкой степени интоксикации - 1 -2 мл внутримышечно, средней степени - 2-4 мл внутримышечно или внутривенно, тяжелой степени - 4 - 6 мл внутримышечно или внутривенно, повторяя через каждые 3-8 мин. до появления легких признаков атропинизации (расширение зрачков, сухость слизистых оболочек). При тяжелых острых отравлениях введение атропина может быть доведено до 30 мл и более. В качестве средств антидотной терапии могут быть использованы пентафен, тропацин, амизил, реактиваторы (восстановители активности) холинэстеразы: 2-ПАМ, ТМБ-4, дипироксим.

    МЕТИЛОВЫЙ СПИРТ (МЕТАНОЛ) - прозрачная, бесцветная жидкость, с характерным запахом винного спирта и жгучим неприятным вкусом. Применяется чаще всего для растворения красок, для обеззараживания инструмента, изделий на предприятиях ракетно-космического комплекса, в химической промышленности. Пути проникновения: - прием внутрь (ошибочно принимая его за питьевой спирт) с целью опьянения. Смертельная доза равна 30-100 г, для отравления тяжелой и средней степени достаточно и 10 г; - через кожу при мытье загрязненных жирами или красками рук; - через органы дыхания при работе в закрытом помещении с растворенными в метиловом спирте красками. Молниеносная интоксикация наступает после приема внутрь 200-300 мл или после пребывания в атмосфере с очень высокой концентрацией его паров. Быстро появляется состояние оглушённости, наступает кома, развивается острая сосудистая недостаточность. Смерть может последовать через 2-3 ч. Замедленную интоксикацию подразделяют на три формы: легкую, среднюю и тяжелую. Легкая - общее недомогание, тошнота, рвота, головная боль, головокружение, резкие боли в области живота, расстройство зрения. Средняя - те же, но более выраженные признаки интоксикации. Затем нарушается зрение, ослабляется его острота, и через 1-2 дня может наступить слепота. Тяжелая - быстрое развитие. Начальные симптомы аналогичны рассмотренным. Затем наступают сонливость, посинение кожи, нарушение дыхания и сердечной деятельности, потеря сознания. Оказание первой помощи. Противоядий метанола нет. При отравлении при приеме внутрь необходимо проводить обильное промывание желудка водой (8-10 л). В случае попадания яда на кожу тщательно промыть это место. Затем пострадавших следует как можно быстрее доставить в лечебное учреждение.

    АНТИФРИЗ - это охлаждающая жидкость внутреннего сгорания, которая состоит из 55% этиленгликоля и 45% воды. Тосол это тот же антифриз.

    ЭТИЛЕНГЛИКОЛЬ - сладковатая жидкость, без запаха. Обычно отравление происходит в тех случаях, когда его пытаются употреблять внутрь с целью опьянения. Некоторые бросают в него соль и другие препараты, якобы для очищения от вредных примесей. При приеме внутрь смертельная доза равна 50-200 мл чистого продукта или 100-400 мл антифриза. Оказание первой помощи. При отравлении необходимо провести обильное промывание желудка 2% раствором питьевой соды (8-10 л) и немедленно доставить пострадавшего в лечебное учреждение. Весомый вклад в загрязнение окружающей среды и ухудшение экологической обстановки вносят тяжелые металлы и их химические соединения. Наиболее распространенными являются свинец, кадмий, мышьяк, ртуть. Чаще всего человек сталкивается с ртутью.

    РТУТЬ - жидкий серебристого цвета металл, тяжелее всех жидкостей. Пары ртути при электрических разрядах излучают голубоватозеленый свет, богатый ультрафиолетовыми лучами. На этой основе созданы ртутные светильники и лампы дневного света. Ртуть очень токсична для любых форм жизни. Немало острых отравлений людей парами ртути происходит в быту в результате элементарной безграмотности, беспечности, халатности и пренебрежения мерами безопасности. Отравление парами ртути наиболее вероятно в помещении, т.е. там, где нет проветривания. Первые признаки отравления проявляются через 8-24 часа и выражаются в общей слабости, головных болях, повышении температуры. Позже начинают дрожать руки, веки, в тяжелых случаях - ноги. Известны даже смертельные исходы. При обнаружении ртути необходимо принять следующие меры: - срочно удалить всех из помещения, т.к. категорически запрещается находиться без средств защиты в помещении, где имеет место выделение паров ртути; - немедленно поставить в известность о случившемся Главного государственного санитарного врача (СЭС) района (города), начальника отдела по делам ГО и ЧС, органы здравоохранения и милицию. Оказание первой помощи. При острых отравлениях немедленно обильно промыть желудок водой с 20-30 г активированного угля. Затем выпить молока (вместо молока можно использовать взбитый с водой яичный белок). Можно рекомендовать слизистые отвары риса или овсянки. И все это завершить приемом слабительного. Пострадавшему необходим полный покой, затем госпитализация. В местах разлива ртути проводится демеркуризация - удаление соединений ртути. Делается это, как правило, механическим путем. В закрытых помещениях пролитую ртуть необходимо собрать самым тщательным образом, а помещение хорошо и долго проветривать.

Существует классификация АХОВ по воздействию на человека и окружающую среду

1. Ядовитые:

Смертельные:

Нервно-паралитического действия;

Кожно-нарывные;

Удушающие;

Общеядовитые;

Временно выводящие из строя:

Психохимические;

2. Неядовитые:

Раздражающие (слезоточивые):

Затрудняющие дыхание;

Вызывающие зуд кожи;

Специальные (для растений):

Гербициды;

Дефолианты (для уничтожения листвы).

По физическим свойствам АОХВ классифицируются на:

· твердые и сыпучие вещества, летучие при температуре до 40°С (гранозан, меркуран и др.);

· твердые и сыпучие вещества, нелетучие при обычной температуре хранения (сулема, фосфор, мышьяк и др.);

· жидкие летучие, хранимые под давлением, сжатые и сжиженные газы. Подгруппа А - аммиак, оксид углерода; подгруппа Б - хлор, диоксид серы, сероводород, фосген, метилбромид;

· жидкие летучие, хранимые в емкостях без давления. Подгруппа А - нитро- и аминосоединения, циановодород; подгруппа Б - нитрилакриловая кислота, никотин, тиофос, метафос, сероуглерод, тетраэтилсвинец, дифосген, дихлорэтан, хлорпикрин;

· дымящие кислоты: серная, азотная, соляная, плавиковая и др.

По клиническим признакам интоксикации и механизму действия (клинико-физиологическая или токсикологическая классификация) среди АОХВ различают:

· вещества с преимущественно удушающим действием (хлор, фосген, дифосген, хлорпикрин, хлорид серы, фтор и его соединения и др.);

· вещества преимущественно общеядовитого действия (оксид углерода, цианиды, анилин, гидразин и др.);

· вещества, обладающие удушающим и общеядовитым действием (сероводород, диоксид серы, азотная кислота, оксиды азота и др.);

· вещества нервно-паралитического действия (ФОС);

· вещества, обладающие удушающим и нейротропным действием (аммиак);

· метаболические яды (диоксин, сероуглерод, метилбромид, дихлорэтан, четыреххлористый углерод).

Несмотря на то, что мы буквально купаемся в них, химические вещества не славятся хорошей репутацией. Некоторые из них могут быть полезны, но практически все будут ядом при определенных условиях. Химические вещества и реагенты, которые вы найдете в списке ниже, будут опасны даже в идеальных условиях. Чрезвычайно опасны.


Современный биолог должен знать принципы работы с ДНК. Проблема в том, что ДНК совершенно невидима в концентрациях, которые использует большинство людей. Если вы хотите изолировать фрагменты ДНК, их нужно раскрасить. Бромистый этидий идеально подходит в качестве красителя ДНК. Он красиво флуоресцирует и тесно цепляется за ДНК. Что еще нужно для счастья? Может, чтобы это соединение не вызывало рак?

Бромистый этидий окрашивает ДНК, протискиваясь между парами оснований. Это приводит к нарушению целостности ДНК, поскольку присутствие бромистого этидия вызывает напряжение в структуре. Места разрывов становятся площадками для мутаций.

А вот мутации, как известно, чаще всего нежелательны. Притом что вам нужно использовать ультрафиолетовый свет, еще один канцерогенный агент, чтобы визуализировать краситель, что явно не сделает компонент безопаснее. Многие ученые, работающие с ДНК, предпочитают использовать более безопасные соединения для окрашивания дезоксирибонуклеиновой кислоты.

Диметилкадмий


Свинец, ртуть и все их друзья вызывают различные проблемы со здоровьем, попадая в организм человека. В некоторых формах эти тяжелые металлы могут проходить через тело, не поглощаясь. В других они легко захватываются. Оказавшись внутри, они начинают вызывать проблемы.

Диметилкадмий вызывает серьезные ожоги кожи и повреждения глаз. Также это яд, который накапливается в тканях. Кроме того, если физиологических эффектов недостаточно, это химическое вещество горюче в жидкой и газообразной формах. Взаимодействия с воздухом достаточно, чтобы поджечь его, а вода только усугубляет процесс горения.

В процессе горения диметилкадмий производит оксид кадмия - еще одно вещество с неприятными свойствами. Оксид кадмия вызывает рак и гриппоподобному заболеванию под названием «литейная лихорадка».

VX


VX, как называют Venomous Agent X («отравляющий агент X»), это химическое вещество, которому не нашли применения за пределами химического оружия. Разработанное английской исследовательской военной станцией в Портоне, это вещество без запаха, без вкуса смертельно даже в объеме 10 миллиграммов. Британское правительство торговало информацией о VX с американским в обмен на процесс создания термоядерного оружия.

VX с легкостью впитывается в кожу. Кроме того, он не сразу распадается в окружающей среде, поэтому атака с применением VX приведет к долгосрочным последствиям. Одежды, которую носили во время воздействия вещества, будет достаточно, чтобы отравить любого, вступившего с ней в контакт. Воздействие VX мгновенно убивает, вызывая судороги и паралич. наступает в процессе отказа дыхательной системы.

Триоксид серы

Триоксид серы - это прекурсор серной кислоты, необходимый также для некоторых реакций сульфирования. Если бы триоксид серы не был полезен, ни один здравомыслящий ученый не держал бы его при себе. Триоксид серы чрезвычайно едкий, когда вступает в контакт с органической материей.

Взаимодействуя с водой (которая составляет большую часть нашего тела), он создает серную кислоту с выделением тепла. Даже если он не попал непосредственно на вашу плоть, даже рядом находиться будет весьма опасно. Пары серной кислоты делают плохое с легкими. Проливание триоксида серы на органический материал вроде бумаги или дерева порождает токсичный огонь.

Батрахотоксин


Батрахотоксин - это сложная на вид молекула, которая настолько смертельна, что одна 136-миллионная грамма этого вещества будет смертельной для 68-килограммового человека. Чтобы вы понимали, это примерно две гранулы соли. Батрахотоксин входит в число самых опасных и ядовитых химических веществ.

Батрахотоксин связывается с натриевыми каналами в нервных клетках. Роль этих каналов жизненно важна в мышечных и нервных функциях. Удерживая эти каналы открытыми, химическое вещество устраняет любой мышечный контроль из организма.

Батрахотоксин нашли на коже крошечных лягушек, яд которых использовали для отравленных стрел. Некоторые племена индейцев обмакивали кончики стрел в яд, выделяемый лягушками. Дротики и стрелы парализовали добычу и позволяли охотникам спокойно ее забирать.

Диоксидифторид


Диоксидифторид - это страшное химическое вещество, имеющее также чарующее название FOOF, поскольку к двум атомам фтора крепятся два атома кислорода. В 1962 году химик А. Г. Штренг опубликовал работу под названием «Химические свойства диоксидифторида». И хотя это название не кажется пугающим, эксперименты Штренга определенно таковыми были.

FOOF изготавливается при очень низкой температуре, поскольку распадается при температуре кипения около -57 градусов по Цельсию. Во время своих экспериментов Штренг обнаружил, что FOOF взрывается, вступая в действие с органическими соединениями, даже при температуре -183 градуса Цельсия. Взаимодействуя с хлором, FOOF сильно взрывается, а контакт с платиной приводит к такому же эффекту.

Короче, в разделе результатов в работе Штренга было множество слов «вспышка», «искра», «взрыв», «сильно» и «огонь» в разных комбинациях. Не забывайте, что все это происходило при температурах, при которых большинство химических веществ по сути инертны.

Цианистый калий


Цианид - простая молекула, всего лишь атом углерода, трижды связанный с атомом азота. Будучи небольшой, молекула цианида может просачиваться в белки и делать им очень плохо. Особенно цианид любит связываться с атомами железа в центре гемопротеинов.

Один из гемопротеинов крайне полезен для нас: гемоглобин, белок, переносящий кислород в нашей крови. Цианид избавляет гемоглобин от способности перевозить кислород.

Когда цианистый калий вступает в контакт с водой, он разбивается на цианистый водород, который легко всасывается телом. Этот газ пахнет горьким миндалем, хотя не все могут его учуять.

Из-за быстрой реакции цианистый калий часто использовался как средство для [Роскомнадзор] многими людьми. Британские агенты времен Второй мировой войны носили таблетки цианида на случай поимки, и многие высокопоставленные нацисты также использовали капсулы цианистого калия, чтобы избегать правосудия.

Диметилртуть


Две капли диметилртути - и всё.

В 1996 году Карен Веттерхан исследовала эффекты воздействия тяжелых металлов на организмы. Тяжелые металлы в своей металлической форме довольно плохо взаимодействуют с живыми организмами. Хотя это и не рекомендуется, вполне можно опустить руку в жидкую ртуть и успешно ее вынуть.

Поэтому чтобы ввести ртуть в ДНК, Веттерхан использовала диметилртуть, атом ртути с двумя присоединенными органическими группами. В процессе работы Веттерхан уронила каплю, может две, на свою латексную перчатку. Через шесть месяцев она умерла.

Веттерхан была опытным профессором и приняла все рекомендуемые меры предосторожности. Но диметилртуть просочилась через перчатки менее чем за пять секунд, а через кожу - менее чем за пятнадцать. Химическое вещество не оставило никаких явных следов и Веттерхан заметила побочные эффекты лишь несколько месяцев спустя, когда было уже слишком поздно лечиться.

Трифторид хлора


Хлор и фтор по отдельности неприятные элементы. Но если они сочетаются в трифторид хлора, все становится еще хуже.

Трифторид хлора - это настолько коррозионное вещество, что его даже в стекле хранить не получится. Это такой сильный окислитель, что он сможет поджечь вещи, которые даже в кислороде не горят.

Даже пепел вещей, сгоревших в атмосфере кислорода, загорится под действием трифторида хлора. Ему даже не нужен источник воспламенения. Когда 900 килограммов трифторида хлора разлили в результате промышленной аварии, это химическое вещество растворило 0,3 метра бетона и метр гравия под собой.

Единственный (относительно) безопасный способ хранить это вещество - металлический контейнер, который уже был обработан фтором. Таким образом создается фтористый барьер, с которым не реагирует трехфтористый хлор. Встречаясь с водой, трифторид хлора мгновенно взрывается с выделением тепла и плавиковой кислоты.

Плавиковая кислота

Любой, кто работал в области химии, слышал байки про фтористоводородную кислоту. В техническом смысле это слабая кислота, которая нелегко расстается со своим ионом водорода. Поэтому быстрый химический ожог получит от нее довольно сложно. И в этом секрет ее коварства. Будучи относительно нейтральной, плавиковая кислота может проходить через кожу, не уведомляя вас, и попадать в организм. И оказавшись на месте, плавиковая кислота приступает к работе.

Когда кислота отдает свой протон, остается фтор, который вступает в реакцию с другими веществами. Эти реакции нарастают как снежный ком, и фтор сеет ужасный хаос. Одной из любимых целей фтора является кальций. Поэтому плавиковая кислота приводит к гибели костной ткани. Если жертву оставить без лечения, смерть будет наступать долго и больно.