Зависимость размеров тел от температуры — Гипермаркет знаний. Тема2.1.6 Линейное и объемное расширение твердых тел при нагревании

Общеизвестно, что твердые тела при нагревании увеличивают свой объем. Это - тепловое расширение. Рассмотрим причины, приводящие к увеличению объема тела при нагревании.

Очевидно, что объем кристалла растет с увеличением среднего расстояния между атомами. Значит, повышение температуры влечет за собой увеличение среднего расстояния между атомами кристалла. Чем же обусловлено увеличение расстояния между атомами при нагревании?

Повышение температуры кристалла означает увеличение энергии теплового движения, т. е. тепловых колебаний атомов в решетке (см. стр. 459), а следовательно, и рост амплитуды этих колебаний.

Но увеличение амплитуды колебаний атомов не всегда приводит к увеличению среднего расстояния между ними.

Если бы колебания атомов были строго Уармоническими, то каждый атом настолько же приближался бы к одному из своих соседей, насколько удалялся от другого, и увеличение амплитуды его колебаний не привело бы к изменению среднего межатомного расстояния, а значит, и к тепловому расширению.

В действительности атомы в кристаллической решетке совершают ангармонические (т. е. не гармонические) колебания. Это Обусловлено характером зависимости сил взаимодействия между/атомами от расстояния между ними. Как было указано в начале настоящей главы (см. рис. 152 и 153), зависимость эта такова, что при больших расстояниях между атомами силы взаимодействия между атомами проявляются как силы притяжения, а при уменьшении этого расстояния меняют свой знак и становятся силами отталкивания, быстро возрастающими с уменьшением расстояния.

Это приводит к тому, что при возрастании «амплитуды» колебаний атомов вследствие нагревания кристалла рост сил отталкивания между атомами преобладает над ростом сил притяжения. Другими словами, атому «легче» удалиться от соседа, чем приблизиться к другому. Это, конечно, должно привести к увеличению среднего расстояния между атомами, т. е. к увеличению объема тела при его нагревании.

Отсюда следует, что причиной теплового расширения твердых тел является ангармоничность колебаний атомов в кристаллической решетке.

Количественно тепловое расширение характеризуется коэффициентами линейного и объемного расширения, которые определяются следующим образом. Пусть тело длиной I при изменении температуры на градусов изменяет свою длину на Коэффициент линейного расширения определяется из соотношения

т. е. коэффициент линейного расширения равен относительному изменению длины при изменении температуры на один градус. Точно так же коэффициент объемного расширения определяется формулой

т. е. коэффициент равен относительному изменению объема отнесенному к одному градусу.

Из этих формул следует, что длина и объем при некоторой температуре, отличающейся от начальной на градусов, выражаются формулами (при малом

где начальные длина и объем тела.

Вследствие анизотропии кристаллов коэффициент линейного расширения а может быть различным в разных направлениях. Это означает, что если из данного кристалла выточить шар, то после его нагревания он потеряет свою сферическую форму. Можно показать, что в самом общем случае такой шар при нагревании превращается в трехосный эллипсоид, оси которого связаны с кристаллографическими осями кристалла.

Коэффициенты теплового расширения по трем осям этого эллипсоида называются главными коэффициентами расширения кристалла.

Если их обозначить соответственно через то коэффициент объемного расширения кристалла

Для кристаллов с кубической симметрией, так же как и для изотропных тел,

Шар, выточенный из таких тел, остается шаром и после нагревания (разумеется, большего диаметра).

В некоторых кристаллах (например, гексагональных)

Коэффициенты линейного и объемного расширения практически остаются постоянными, если интервалы температур, в которых они измеряются, малы, а сами температуры высокие. Вообще же коэффициенты теплового расширения зависят от температуры и притом так же, как теплоемкость, т. е. при низких температурах коэффициенты уменьшаются с понижением температуры пропорционально кубу температуры, стремясь, как и теплоемкость,

к нулю при абсолютном нуле. Это неудивительно, так как и теплоемкость, и тепловое расширение связаны с колебаниями решетки: теплоемкость дает количество теплоты, необходимое для увеличения средней энергии тепловых колебаний атомов, зависящей от амплитуды колебаний, коэффициент же теплового расширения непосредственно связан со средними расстояниями между атомами, которые тоже зависят от амплитуды атомных колебаний.

Отсюда следует важный закон, открытый Грюнейзеном: отношение коэффициента теплового расширения к атомной теплоемкости твердого тела для данного вещества есть величина постоянная (т. е. не зависящая от температуры).

Коэффициенты теплового расширения твердых тел обычно очень малы, как это видно из табл. 22. Приведенные в этой таблице значения коэффициента а относятся к интервалу температур между и

Таблица 22 (см. скан) Коэффициенты теплового расширения твердых тел

Некоторые вещества имеют особенно малый коэффициент теплового расширения. Таким свойством отличается, например, кварц Другим примером может служить сплав никеля и железа (36% Ni), известный под названием инвар Эти вещества получили широкое применение в точном приборостроении.

При нагревании тел растет средняя кинетическая энергия поступательного движения молекул и среднее расстояние между молекулами. Поэтому все вещества при нагревании расширяются, а при охлаждении сжимаются. Различают линейное и объемное расширение.

Изменение одного определенного размера твердого тела при изменениях температуры называетсялинейным расширением (или сжатием).

Где – длина стержня при 0 0 ,

Коэффициент линейного расширения. Размерность = О С -1 .

Длина тела при любой температуре t: ;

При объемном расширении увеличивается объем: , где: – объем тела при 0 0 C.

Объем тела при любой температуре t: , где:

Коэффициент объемного расширения;

Экспериментально установлено, что . Поэтому .

Аналогично для площади поверхности твердого тела: .

В жидкостях есть одно замечательное исключение: вода при нагревании от 0 0 C до +4 0 C сжимается, а при охлаждении от +4 0 C до 0 0 C – расширяется. Коэффициент объемного расширения воды сильно меняется при изменении температуры.

Примеры тепловых расширений:

Вода при замерзании расширяется и разрывает горные породы, металлические трубы и другие технические конструкции.

В автоматике применяются биметаллические пластины, использующие различие коэффициентов линейного расширения каждой из двух пластин. При нагревании биметаллическая пластина теряет устойчивость, нажимает на переключатель, в результате чего исполнительный механизм срабатывает.

Тепловые расширения важно учитывать при прокладывании рельсов, натягивании проводов, сооружении мостов и т.д. Выводы из электроламп и радиоламп производят из материала, у которого коэффициент линейного расширения близок к коэффициенту линейного расширения стекла.

Плавление и кристаллизация.
Диаграмма фазовых состояний

Переход вещества из твердого состояния в жидкоесостояние называется плавлением, а переход из жидкого состояния в твердое –отвердеванием или кристаллизацией. Плавление и отвердевание происходит при одной и той же температуре, называемойтемпературой плавления. Давление практически не влияет на величину температуры плавления. Температуру плавления вещества при нормальном атмосферном давлении называютточкой плавления.

При плавлении твердого тела увеличивается расстояния между частицами, образующими кристаллическую решетку, и происходит разрушение самой решетки. У подавляющего большинства веществ объем при плавлении увеличивается, а при отвердевании уменьшается.

Область, в которой вещество однородно по всем физическим и химическим свойствам, называется фазой состояния этого вещества. Жидкая и твердая фазы вещества при одинаковой температуре могут оставаться в равновесии сколь угодно долгое время (лед и вода при 0 0 C). Поэтому пока все вещество не расплавится, его температура остается неизменной , равной температуре плавления.

Теплотой плавления называется количество теплоты, которое необходимо подвести к телу массой m, находящемуся при температуре плавления , чтобы его расплавить.

Где – удельная теплота плавления.

1 Дж/кг.

На рисунке 34 показаны графики изменения температуры вещества при плавлении и отвердевании. Отрезок (рисунок 34а) выражает количество теплоты, полученное веществом при нагревании в твердом состоянии (от до T ПЛ), отрезок - при плавлении и отрезок - при нагревании в жидком состоянии. Отрезок (рисунок 34б) выражает количество теплоты, отданное веществом при охлаждении в жидком состоянии (от до ), отрезок - при отвердевании и отрезок - при охлаждении в твердом состоянии.

Рисунок 34. Графики изменения температуры вещества при плавлении и отвердевании

Многие твердые вещества обладают запахом. Это доказывает, что твердые вещества могут переходить в газообразное состояние, минуя жидкое. Испарение твердых тел называетсявозгонкой или сублимацией (от латинского “сублимате” - возносить). В пищевой промышленности используется обладающий таким свойством “сухой лед” (СО 2). Возможен и обратный процесс – рост кристаллов из газообразного вещества (лед на окнах, зарастание перемычек ПЗУ).

Для каждого вещества можно составить диаграмму состояний в координатах Р и Т (рисунок 35), на основании которой можно легко определить, в каком состоянии будет находиться это вещество при тех или иных внешних условиях. Каждая точка диаграммы соответствует равновесному состоянию вещества, в которых оно может находиться сколь угодно долго.

Кривая KC – зависимость давления насыщающего пара от температуры. Точка K – критическая точка.

Кривая CA – зависимость от температуры давления насыщающих паров, находящихся в равновесном состоянии с поверхностью твердого тела.

Кривая KC – линия равновесия жидкой и газообразной фаз. Прямая BC – линия равновесия жидкой и твердой фаз. Кривая AC – линия равновесия твердой и газообразной фаз.

Точка C изображает равновесие между всеми тремя фазами, ее называют тройной точкой. У гелия нет тройной точки.

Контрольные вопросы:

1. Расскажите о тепловом расширении твердых тел.

2. Что такое плавление и кристаллизация? Что такое теплота плавления?

3. Что такое возгонка вещества?

4. Расскажите о диаграмме состояний вещества.

(объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией .

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры на расширяется на величину , равную:

,

где - так называемый коэффициент линейного теплового расширения . Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Тепловое расширение" в других словарях:

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении р характеризуется изобарным коэфф. расширения (коэфф. объёмного Т. p.) a=1/VX(dV/dT)p, где V объём тела (твёрдого, жидкого или газообразного), Т его… … Физическая энциклопедия

    ТЕПЛОВОЕ РАСШИРЕНИЕ, изменение размеров и формы тела при изменении его температуры. Характеризуется коэффициентами объемного (для твердых тел и линейного) теплового расширения, т.е. изменением объема (линейных размеров) тела при изменении его… … Современная энциклопедия

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объемного расширения, а для твердых тел и коэффициентом линейного расширения, где l изменение линейного размера, ?V объема тела, ?T температуры, индекс указывает на… … Большой Энциклопедический словарь

    тепловое расширение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN heat expansionthermal expansion … Справочник технического переводчика

    ТЕПЛОВОЕ РАСШИРЕНИЕ - изменение размеров и формы тел при их нагревании. Различие в силах сцепления между молекулами тела в различных его агрегатных (см.) сказывается на величине Т. р. Твёрдые тела, молекулы которых сильно взаимодействуют, расширяются мало, жидкости… … Большая политехническая энциклопедия

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом Т. р.) Т2 > T1, V исходный объём тела (разность температур T2 T1… … Большая советская энциклопедия

    тепловое расширение - šiluminis plėtimasis statusas T sritis Standartizacija ir metrologija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis chemija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion rus. тепловое расширение; термическое расширение … Chemijos terminų aiškinamasis žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis fizika atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение, n; термическое расширение, n pranc. dilatation thermique, f; expansion… … Fizikos terminų žodynas

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объёмного расширения αυ = 1/V (ΔV/VT)Ξ, а для твёрдых тел и коэффициентом линейного расширения αл = 1/l(Δl/ΔТ)Ξ, где Δl изменение линейного размера, ΔV объёма тела, ΔТ … … Энциклопедический словарь


Из предыдущих параграфов нам известно, что все вещества состоят из частиц (атомов, молекул). Эти частицы непрерывно хаотически движутся. При нагревании вещества движение его частиц становится более быстрым. При этом увеличиваются расстояния между частицами, что приводит к увеличению размеров тела.

Изменение размеров тела при его нагревании называется тепловым расширением .

Тепловое расширение твердых тел легко подтвердить опытом. Стальной шарик (рис. 87, а, б, в), свободно проходящий через кольцо, после нагревания на спиртовке расширяется и застревает в кольце. После охлаждения шарик вновь свободно проходит через кольцо. Из опыта следует, что размеры твердого тела при нагревании увеличиваются, а при охлаждении - уменьшаются.

Рис. 87

Тепловое расширение различных твердых тел неодинаково .

При тепловом расширении твердых тел появляются огромные силы, которые могут разрушать мосты, изгибать железнодорожные рельсы, разрывать провода. Чтобы этого не случилось, при конструировании того или иного сооружения учитывается фактор теплового расширения. Провода линий электропередачи провисают (рис. 88), чтобы зимой, сокращаясь, они не разорвались.

Рис. 88

Рис. 89

Рельсы на стыках имеют зазор (рис. 89). Несущие детали мостов ставят на катки, способные передвигаться при изменениях длины моста зимой и летом (рис. 90).

Рис. 90

А расширяются ли при нагревании жидкости? Тепловое расширение жидкостей тоже можно подтвердить на опыте. В одинаковые колбы нальем: в одну - воду, а в другую - такой же объем спирта. Колбы закроем пробками с трубками. Начальные уровни воды и спирта в трубках отметим резиновыми кольцами (рис. 91, а). Поставим колбы в емкость с горячей водой. Уровень воды в трубках станет выше (рис. 91, б). Вода и спирт при нагревании расширяются. Но уровень в трубке колбы со спиртом выше. Значит, спирт расширяется больше. Следовательно, тепловое расширение разных жидкостей , как и твердых веществ, неодинаково .

Рис. 91

А испытывают ли тепловое расширение газы? Ответим на вопpoс с помощью опыта. Закроем колбу с воздухом пробкой с изогнутой трубкой. В трубке (рис. 92, а) находится капля жидкости. Достаточно приблизить руки к колбе, как капля начинает перемещаться вправо (рис. 92, б). Это подтверждает тепловое расширение воздуха при его даже незначительном нагревании. Причем, что очень важно, все газы, в отличие от твердых веществ и жидкостей, при нагревании расширяются одинаково .

Рис. 92

Подумайте и ответьте 1. Что называют тепловым расширением тел? 2. Приведите примеры теплового расширения (сжатия) твердых тел, жидкостей, газов. 3. Чем отличается тепловое расширение газов от теплового расширения твердых тел и жидкостей?

Сделайте дома сами

Используя пластиковую бутылку и тонкую трубку для сока, проведите дома опыт по тепловому расширению воздуха и воды. Результаты опыта опишите в тетради.

Интересно знать!

Нельзя после горячего чая сразу пить холодную воду. Резкое изменение температуры часто приводит к порче зубов. Это объясняется тем, что основное вещество зуба - дентин - и покрывающая зуб эмаль при одном и том же изменении температуры расширяются неодинаково.


При изменении температуры размеры тел меняются: при нагревании, как правило, увеличиваются, при охлаждении уменьшаются. Отчего это происходит?
Увеличение размеров небольшого тела невелико и его трудно заметить. Но если взять железную проволоку длиной 1,5- 2 м и нагревать ее электрическим током, то удлинение можно обнаружить на глаз без специальных приборов. Для этого один конец проволоки должен быть закреплен, а другой перекинут через блок. К этому концу надо прикрепить груз, оттягивающий проволоку вниз (рис. 9.1). По указателю, соединенному с грузом, и судят об изменении длины проволоки в процессе ее нагревания или охлаждения.
Рис. 9.1
Расширение небольшого стального шара, нагретого на газовой горелке, можно заметить по его прохождению через кольцо. Холодный шар легко проходит через кольцо, а нагретый застревает в нем. Когда шар остынет, он снова проходит через кольцо.
Как же объяснить, почему тела при нагревании расширяются?
Молекулярная картина теплового расширения
Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Еро (в точке г0) при уменьшении г и сравнительно медленно растет при увеличении г.

Рис. 9.2
щем минимальному значению потенциальной энергии Ер0. По мере нагревания молекулы начинают совершать колебания около положе-
г ния равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по- прежнему соответствовало бы рас-стоянию г0. Это означало бы общую
При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии г0, соответствую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной Ег, среднее положение колеблющейся молекулы соответствует расстоянию гх > г0.
Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются.
Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения Е2, Ез и т. д. При этом увеличивается и среднее расстояние между молекула-ми, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r2 > г3 > г2 и т. д.
При нагревании тела среднее расстояние между колеблющимися молекулами увеличивается, поэтому увеличиваются и размеры тела.

Еще по теме §9.1. ТЕПЛОВОЕ РАСШИРЕНИЕ ТЕЛ:

  1. §9.4. УЧЕТ И ИСПОЛЬЗОВАНИЕТЕПЛОВОГО РАСШИРЕНИЯ ТЕЛ В ТЕХНИКЕ
  2. о том, благодаря чему каждое вновь образованное тело принадлежит к определенному роду вещей и отличается от других [тел]
  3. Структура дорожки Крамара из вихрей эфира, торсионные поля (СВИ, спайки и др.) зависят от радиуса крутящихся тел, от скорости вращения, движения и от других вполне конкретных физических параметров тел и среды, которые их порождают.