Гены митохондриальной днк. Митохондриальная генетика человека. Наследование по отцовской линии у людей

И, независимо, учеными Эллен Харлсбруннер, Хансом Туппи и Готтфридом Шацем при биохимическом анализе фракций митохондрий дрожжей в Венском университете в 1964 году .

Теории возникновения митохондриальной ДНК

Существуют также данные о митохондриальной наследственности по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей, при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец и клонированного крупного рогатого скота. Также описан единственный случай связанный с бесплодием у мужчины..

Геном митохондрий

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы ) некоторых протистов (дизентерийной амёбы , микроспоридий и лямблий ) не содержат ДНК.

Митохондрии дрожжей содержат 78000 пар нуклеотидов.

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК.

Геном митохондрий человека кодирует следующие белки и РНК:


Белки или РНК

Гены

NADH-дегидрогеназа
(комплекс I)

MT-ND1 , MT-ND2 , MT-ND3 , MT-ND4 , MT-ND4L , MT-ND5 , MT-ND6

Кофермент Q - цитохром c редуктаза /Цитохром b
(комплекс III)

MT-CYB

цитохром c оксидаза
(комплекс IV)

MT-CO1 , MT-CO2 , MT-CO3

АТФ-синтаза

MT-ATP6 , MT-ATP8

рРНК

Размер: px

Начинать показ со страницы:

Транскрипт

1 МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, 2010, том 44, 5, с УДК ОБЗОРЫ МИТОХОНДРИАЛЬНЫЙ ГЕНОМ И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ ЧЕЛОВЕКА 2010 г. И. О. Мазунин*, Н. В. Володько, Е. Б. Стариковская, Р. И. Сукерник Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Поступила в редакцию г. Принята к печати г. На сегодняшний день известно более 400 точковых мутаций и более сотни структурных перестроек митохондриальной ДНК (мтднк), связанных с нейромышечными и другими митохондриальными синдромами от летальных в неонатальном периоде до заболеваний с поздним началом. Причина возникновения и развития митохондриальных расстройств кроется, в первую очередь, в дефектах системы окислительного фосфорилирования. Отличительная особенность митохондриальных заболеваний человека состоит в их фенотипической многоликости и в феномене гетероплазмии. Существует необходимость точной оценки количества мутантных мтднк, поскольку уровень гетероплазмии во многом определяет фенотипическое проявление заболевания. Несмотря на то, что с момента установления причинно-следственной связи между мутацией в мтднк и определенной клинической картиной в митохондриальной биологии достигнут значительный прогресс, митохондриальные заболевания и по сей день остаются неизлечимыми. Ключевые слова: митохондриальный геном, окислительное фосфорилирование, мутации митохондриальной ДНК, гетероплазмия, митохондриальные заболевания, терапия дефектов дыхательной цепи митохондрий. MITOCHONDRIAL GENOME AND HUMAN MITOCHONDRIAL DISEASES, by I. O. Mazunin*, N. V. Volodko, E. B. Starikovskaya, R. I. Sukernik (Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia;* Today there are described more than 400 point mutations and more than hundred of structural rearrangements of mitochondrial DNA associated with characteristic neuromuscular and other mitochondrial syndromes, from lethal in the neonatal period of life to the disease with late onset. The defects of oxidative phosphorylation are the main reasons of mitochondrial disease development. Phenotypic diversity and phenomenon of heteroplasmy are the hallmark of mitochondrial human diseases. It is necessary to assess the amount of mutant mtdna accurately, since the level of heteroplasmy largely determines the phenotypic manifestation. In spite of better understanding of the processes of phenotypic expression, currently there are no adequate treatments for mitochondrial diseases. Key words: mitochondrial genome, oxidative phosphorylation, mtdna mutations, heteroplasmy, mitochondrial diseases, mitochondrial respiratory chain defect therapy. Митохондрии выполняют в клетке множество функций, наиболее важная из которых выработка энергии путем окислительного фосфорилирования (ОФ). В отличие от других органелл митохондрии имеют собственную ДНК (мтднк), которая кодирует некоторые субъединицы комплексов ОФ. Мутации мтднк могут приводить к нарушению выработки энергии и, в конечном счете, к гибели клетки. Подобные нарушения высокодифференцированных клеток различных тканей и органов человека приводят к различным патологическим состояниям . О том, что нарушения процесса выработки энергии в форме АТР могут быть причиной некоторых нейромышечных синдромов, известно уже давно , однако причинно-следственную связь между известными заболеваниями/синдромами и Принятые сокращения: ОФ окислительное фосфорилирование; мтднк митохондриальная ДНК; КР контрольный регион; ND NADН-дегидрогеназа; Сytb убихинол-цитохром-с-оксидоредуктаза; CO цитохром-с-оксидаза; LHON наследственная оптическая нейропатия (атрофия) Лебера; LS синдром Лея; NARP/MILS нейропатия, атаксия, пигментная ретинопатия и наследуемый по материнской линии синдром Лея; SNHL/DEAF нейросенсорная глухота и аминогликозид-индуцированная глухота; MELAS митохондриальная энцефалопатия с инсультоподобными эпизодами и лактат-ацидозом; MERRF миоклональная эпилепсия с разорванными красными мышечными волокнами; KSS синдром Кернса Сейра; CPEO хроническая прогрессирующая наружная офтальмоплегия; АФК активные формы кислорода; ЦТК цикл трикарбоновых кислот. * Эл. почта: 755

2 756 МАЗУНИН и др. мутациями в кодирующем районе мтднк обнаружили значительно позже . На сегодняшний день установлено, что от митохондриального заболевания страдает в среднем 1 из взрослых жителей планеты . В обзоре рассмотрены современные представления о структуре и организации митохондриального генома, а также о молекулярных механизмах возникновения митохондриальных заболеваний, обусловленных мутациями мтднк. Мы также сравним молекулярные методы детекции мутаций мтднк и экспериментальные стратегии, направленные на исправление дефектов ОФ. В заключении мы обсудим способы предотвращения наследования мутаций мтднк, поскольку это актуальная проблема митохондриальной медицины в общем и медико-генетического консультирования в частности. СТРУКТУРА МИТОХОНДРИАЛЬНОГО ГЕНОМА мтднк человека представляет собой двухцепочечную кольцевую молекулу размером п.н., в которой расположены 37 генов, участвующих в процессе выработки энергии в дыхательной цепи митохондрий. В их число входят 13 структурных генов, кодирующих субъединицы комплексов ОФ, а также гены 22 трнк и двух ррнк, принимающих участие в синтезе белка непосредственно в митохондриях. Большинство регуляторных участков находятся в некодирующем, так называемом контрольном, районе (КР) протяженностью 1122 п.н. В процессе репликации мтднк в КР образуется трехцепочечный фрагмент размером 710 п.н., называемый D-петлей (displacement loop). Большую часть митохондриального генома занимает кодирующая последовательность, внутри которой межцистронным участкам принадлежат всего 87 п.н. В КР размещены промоторы тяжелой (HSP1 и HSP2) и легкой (LSP) цепей, а также точка инициации репликации тяжелой цепи (O H). Точка инициации репликации легкой цепи (O L) находится за пределами КР. Цепи мтднк характеризуются асимметричным распределением G/C-пар. Обогащенная остатками гуанина тяжелая цепь содержит оба гена ррнк, 12 структурных генов и 14 генов трнк. Оставшиеся восемь генов трнк и один структурный ген (ND6) располагаются в легкой цепи (рис. 1а) . Несмотря на некоторое сходство в строении мтднк человека и ДНК прокариот, заключающееся, в частности, в отсутствии интронов и перекрывании генов, структурная организация генома митохондрий значительно сложнее . Установлено, что молекулы мтднк (пять семь молекул) соматических клеток организованы в нуклеоиды, в состав которых входят гистоноподобные белки и белки, участвующие в регуляции транскрипции и репликации мтднк, основные из которых mtssb, POLG, TFAM и Twinkle . Нуклеоиды взаимодействуют с внутренней мембраной митохондрий посредством белков, которые специфически связываются с КР мтднк (предположительно, с D-петлей), с одной стороны, и внутренней мембраной митохондрий, с другой, объединяя и стабилизируя несколько молекул мтднк . Предполагается, что нуклеоид имеет многослойную организацию: в его центральной части происходят процессы репликации и транскрипции, а на периферии процессинг РНК и ее трансляция . Вероятно, роль нуклеоидной организации заключается в защите мтднк от повреждений, а взаимное расположение молекул мтднк в составе нуклеоида способствует процессу репарации путем генной конверсии. Предполагается также, что нуклеоид это основная единица сегрегации мтднк . Установлено, что отдельные нуклеоиды крайне редко обмениваются мтднк . Это косвенным образом подтверждает гипотезу стойкого нуклеоида (faithful nucleoid) . Согласно альтернативной модели динамичного нуклеоида (dynamic nucleoid), мтднк свободно перемещается между нуклеоидами с последующей рекомбинацией . ОСОБЕННОСТИ РЕПЛИКАЦИИ, ТРАНСКРИПЦИИ И ТРАНСЛЯЦИИ мтднк В настоящее время обсуждаются две возможные модели репликации мтднк. Согласно одной из них, репликация происходит по традиционному асинхронному механизму, начинается в O H и двигается по тяжелой цепи вплоть до O L, после чего начинает реплицироваться легкая цепь в противоположном направлении . В альтернативной модели копирование также начинается в O H, однако синтез обеих цепей происходит одновременно . Предполагается, что в зависимости от состояния клетки репликация может происходить по тому или иному механизму. В стационарной фазе роста мтднк реплицируется, по-видимому, по синхронному механизму, переключаясь на асинхронный, когда необходимо быстро увеличить число митохондрий . Известно, что репликация осуществляется с участием белков, кодируемых яднк, митохондриальной ДНК-полимеразой (POLG), геликазой (Twinkle) и белком, связывающимся с оцднк (mtssb) . Транскрипция мтднк начинается с двух промоторов тяжелой цепи (HSP1 и HSP2) и одного промотора легкой цепи (LSP). С LSP синтезируется полицистронная РНК, состоящая из восьми трнк и одной мрнк, кодирующей субъединицу ND6, в то время как с HSP1 и HSP2 синтезируются транскрипты, включающиие остальные 14 трнк, две ррнк и 12 мрнк, причем количество транскриптов, включающих две ррнк и две трнк (короткий транскрипт с HSP1), на порядок больше. Особенностью созревания индивидуальных мрнк является их вырезание из полицистронного транскрипта пу-

3 МИТОХОНДРИАЛЬНЫЙ ГЕНОМ И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ 757 HSP а 16S V 12S F LSP O H D-петля P T Cytb ND1 L E ND6 M I ND2 W Q A N CY O L L S H ND5 COI S ND4 D COII K ATP8 ATP6 G COIII ND4L R ND3 H + б H + H + H + Матрикс Внутренняя мембрана Межмембранное пространство ND2 ND1 ND3 ND6 ND5 ND4 ND4L Сукцинат e CoQ Фумарат Cytb Cytc O 2 e e e COI COII COIII H 2 OADP ATP8 ATP6 ATP Субъединицы гены мтднк: гены яднк: Комплекс I Комплекс II Комплекс III Комплекс IV Комплекс V ~ ~14 Рис. 1. Карта митохондриального генома человека (а) и схема окислительного фосфорилирования (б). Геном включает 37 генов, из которых 13 (ND1 ND6, ND4L, Cytb, COI COIII, ATP6, ATP8) кодируют субъединицы комплексов окислительного фосфорилирования, два гена (12S и 16S) ррнк, 22 гена (обозначены заглавными английскими буквами) трнк. D-петля трехцепочечный участок контрольного региона мтднк, образующийся в процессе репликации; в контрольном регионе находятся также точки инициации транскрипции тяжелой (HSP) и легкой (LSP) цепи и точка инициации трансляции тяжелой цепи (О Н). Точка инициации трансляции легкой цепи (О L) находится вне контрольного региона. Система окислительного фосфорилирования включает пять комплексов: комплекс I состоит из 46 субъединиц (семь кодируются мтднк и 39 яднк); комплекс II состоит из четырех субъединиц (яднк); комплекс III из 11 субъединиц (одна мтднк и 10 яднк); комплекс IV состоит из 13 субъединиц (три мтднк и 10 яднк); комплекс V состоит из 16 субъединиц (две мтднк и 14 яднк); и два специфических переносчика электронов, CoQ и Сytс. По мере движения электронов по дыхательной цепи, протоны переносятся из матрикса в межмембранное пространство комплексами I, III и IV, а затем, через комплекс V, возвращаются в матрикс. Комплекс V синтезирует АТР из АDP и неорганического фосфата за счет Ψp. Адаптировано из . тем узнавания вторичных структур трнк, гены которых располагаются между структурными генами . Ключевой процесс в экспрессии митохондриальных мрнк полиаденилирование, так как в ходе него для некоторых мрнк создаются стоп-кодоны (UAA), отсутствующие в пре-мрнк . В число основных белков транскрипционной машины входят митохондриальная РНК-полимераза (POLRMT), митохондриальные факторы активации транскрипции A (TFAM), В1 (TFB1M) и В2 (TFB2M), а также фактор терминации транскрипции (mterf) . Трансляция белков, кодируемых мтднк, происходит в матриксе на митохондриальных рибосомах (миторибосомы), которые содержат меньше ррнк (по сравнению с бактериальными или эукариотическими рибосомами), но больше рибосомных белков. Трансляционный аппарат митохондрий человека включает два фактора инициации (IF2, IF3), три фактора элонгации (EFG, EFTs, EFTu) и по крайней мере один фактор терминации (mtrf1). К особенностям трансляции в митохондриях относится использование уникального генетического кода, присутствие 22 трнк и отсутствие кепов, необходимых

4 758 МАЗУНИН и др. для узнавания мрнк сайтов связывания на рибосомах . ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ ОФ одна из фундаментальных метаболических реакций, протекающая во внутренней мембране митохондрий. Она заключается в сопряжении транспорта электронов с образованием АТР. Система ОФ включает пять белковых комплексов, каждый из которых состоит из нескольких субъединиц (рис. 1б). Уэукариот электроны переносятся по дыхательной цепи, начиная с NADН, через комплекс I (NADНубихинон-редуктаза), либо с молекулы сукцината через комплекс II (сукцинат-убихинон-редуктаза), а затем последовательно на интегральный мембранный переносчик электронов СоQ, комплекс III (убихинол-цитохром-с-редуктаза), переносчик электронов цитохром с (Cytc) и, наконец, через комплекс IV (цитохром-с-оксидаза) на молекулярный кислород . Энергия, высвобождаемая потоком электронов, используется для переноса протонов из матрикса в межмембранное пространство комплексами I, III и IV . Это создает электрохимическую разницу потенциалов (Ψp, протонный градиент) по обе стороны внутренней мембраны. Энергия, запасенная в виде Ψp, используется комплексом V (АТРсинтаза). По мере обратного транспорта протонов в матрикс через протонный канал (F о -субъединица АТРсинтазы) происходит фосфорилирование АDP неорганическим фосфатом с образованием молекулы АТР . Таким образом, процесс окисления субстрата и восстановления кислорода сопряжен с образованием АТР. Установлено, что комплексы ОФ дрейфуют по внутренней мембране не в виде отдельных структур, а в составе единого высокомолекулярного суперкомплекса респирасомы . Соотношение комплексов в респирасоме, вероятно, видоспецифично . Очевидно, что истинная респирасома, т.е. образование, способное переносить электроны от NADН к молекулярному кислороду, это суперкомплекс, включающий комплексы I, II, III и IV, а также специфические агенты-переносчики CoQ и Cytc . Предполагается, что существует АТР-синтасома, объединяющая комплекс V, переносчик неорганического фосфата и адениннуклеотид-транслоказу (ANT) в соотношении 1: 1: 1 . Однако получены свидетельства в пользу независимого функционирования этих компонентов . Несмотря на всеобщее признание теории Митчелла , механизм переноса протонов из матрикса в межмембранное пространство до сих пор не ясен неизвестно, какие именно структуры комплексов вовлечены в этот процесс. Однако сравнительный анализ комплексов ОФ у представителей разных видов показал, что перенос протонов и электронов осуществляется при участии субъединиц, кодируемых мтднк. Помимо синтеза АТР, ОФ представляет собой эндогенный источник активных форм кислорода (АФК): O 2 (супероксид), Н 2 О 2 (пероксид водорода) и ОН (гидроксильный радикал) . O 2 формируется, главным образом, в комплексах I и III . При помощи митохондриальной Mn-зависимой супероксиддисмутазы либо Cu Zn-зависимой супероксиддисмутазы O 2 превращается в Н 2 О 2, которую, в свою очередь, глутатионпероксидаза превращает в Н 2 О. Кроме того, в присутствии ионов Fe 2+ и Сu 2+ Н 2 О 2 может превращаться в ОН. O 2 может реагировать и с NO (оксид азота), который, как показано , образуется эндогенно в митохондриях при помощи митохондриальной NO-синтазы, приводя к образованию ONOO (пероксинитрит). Установлено, что в формировании активных форм азота принимает участие комплекс IV . Хроническое воздействие АФК на клетку приводит к окислительному повреждению белков, липидов и нуклеиновых кислот, а острое воздействие к инактивации Fe Sцентров ферментативных комплексов ОФ и фермента цикла трикарбоновых кислот (ЦТК) аконитазы , что приводит к снижению продукции АТР . Высокоактивный ONOO нитрирует остатки тирозина окружающих белков, в результате чего повреждаются комплекс I и митохондриальная супероксиддисмутаза . Кроме того, в комплексе I сульфгидрильные группы могут подвергаться нитрозилированию, что приводит к подавлению активности комплекса . Воздействие АФК на мтднк приводит к накоплению множественных мутаций, снижению скорости ОФ и еще большему накоплению АФК. Все это в итоге нарушает функционирование клетки, вызывает программируемую клеточную смерть апоптоз . ПАТОГЕННЫЕ МУТАЦИИ мтднк И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ Скорость мутирования у мтднк примерно в 17 раз выше, чем у яднк . Это определяется совокупностью таких факторов, как особенности структурной организации митохондриального генома, функциональное состояние рибонуклеотидредуктазы, ошибки репликации, мутации ядерных генов, кодирующих белки, действующие в митохондриях. Однако наиболее значителен вклад АФК . Путь от возникновения мутации в мтднк до клинического проявления заболевания во многом неясен: предполагается, что возникновение мутаций мтднк приводит к накоплению АФК, изменению кальциевого обмена, активации митохондриальных пор повышенной проницаемости (mtptp, mitochondrial permeability transition pore) и, в итоге, к апоптозу. Такой сценарий, вероятно, характерен для нейродеге-

5 МИТОХОНДРИАЛЬНЫЙ ГЕНОМ И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ 759 Таблица 1. Патогенные точковые мутации мтднк Заболевание комплекс I (гены ND) Патогенные мутации в структурных генах комплекс III (Cytb) комплекс IV (гены CО) комплекс V (АТР6 и АТР8) Патогенные мутации в генах ррнк и трнк ррнк трнк LHON LS NARP/MILS 5 SNHL/DEAF MELAS MERRF 5 KSS 3 CPEO 1 17 Другие Всего мутаций Примечание. ND NADН-дегидрогеназа; Сytb убихинол-цитохром-с-оксидоредуктаза; CO цитохром-с-оксидаза; ATP АТPсинтаза; LHON наследственная оптическая нейропатия (атрофия) Лебера; LS синдром Лея; NARP/MILS нейропатия, атаксия, пигментная ретинопатия и наследуемый по материнской линии синдром Лея; SNHL/DEAF нейросенсорная глухота и аминогликозид-индуцированная глухота; MELAS митохондриальная энцефалопатия с инсультоподобными эпизодами и лактатацидозом; MERRF миоклональная эпилепсия с разорванными красными мышечными волокнами; KSS синдром Кернса Сейра; CPEO хроническая прогрессирующая наружная офтальмоплегия. неративных процессов, обусловленных мутациями мтднк . На сегодняшний день клинико-биохимические характеристики митохондриальных заболеваний хорошо известны . Однако при установлении диагноза, а значит, и прогноза для заболевших и степени риска для здоровых носителей не обойтись без молекулярного анализа мтднк. Для описания заболеваний обычно применяют классификацию, основанную на том, какую область мтднк затрагивает мутация. В соответствии с этим патогенные мутации мтднк подразделяют на: 1) мутации структурных генов; 2) мутации генов ррнк и трнк и 3) структурные перестройки, затрагивающие большие сегменты мтднк. Патогенные мутации в структурных генах Патогенные мутации, изменяющие нуклеотидную последовательность структурных генов мтднк, подразделяют на четыре группы, в зависимости от того, какой комплекс ОФ они затрагивают. Мутации митохондриальных генов комплекса I. Наибольшее число патогенных мутаций обнаружено в структурных генах комплекса I . Согласно базе данных MITOMAP (данные на 09/02/2010), в гене ND1 обнаружено 33 патогенных мутации, в ND2 12, ND3 6, ND4L 5, ND4 14, ND5 22 и ND6 18, т.е. всего 110 мутаций. Наследственная оптическая нейропатия (атрофия) Лебера (LHON) наиболее распространенное митохондриальное заболевание, обусловленное мутациями в структурных генах мтднк и, в большинстве случаев, в генах ND (табл. 1). Клинически LHON характеризуется дегенерацией ганглиозного слоя сетчатки и атрофией зрительного нерва. Около 95% случаев LHON в европейской популяции вызываются тремя мутациями первичного риска: A3460G (ND1), G11778A (ND4) и T14484C (ND6). В генах мтднк выявлено множество редких мутаций, ассоциированных с LHON, число которых постоянно растет . LHON одно из немногих митохондриальных заболеваний, для которого установлена корреляция между экспрессией патогенной мутации и принадлежностью к определенной филетической линии (гаплогруппе мтднк): так, мутации G11778A и T14484C часто ассоциированы с гаплогруппой J, в то время как мутация G3460A с гаплогруппой K . Нами, в частности, показано, что мутация G3460A, найденная на территории Сибири, ассоциирована с гаплогруппами, производными макрогаплогруппы M, которая с наибольшей частотой представлена у коренных жителей Сибири (алтайцев, тувинцев, бурят); в то же время, мутация G11778A, в соостветствии с опубликованными данными, экспрессируется на фоне гаплогрупп кластера TJ .

6 760 МАЗУНИН и др. Другое распространенное заболевание, связанное с мутацией в генах ND, синдром Лея (LS) прогрессирующее нейродегенеративное состояние, при котором поражаются ствол головного мозга и базальные ганглии с образованием характерных симметричных некротических изменений. Подобные симптомы вызываются мутациями генов COIII и ATP6, а также некоторых трнк . Мутации митохондриальных генов комплекса III. В гене Сytb выявлено 29 патогенных мутаций, которые приводят, как правило, к миопатиям . Кроме того, мутации в гене Сytb ассоциированы с энцефаломиопатией, кардиомиопатией, тубулопатией и LHON . Мутации митохондриальных генов комплекса IV. К настоящему времени в гене COI найдено 33 патогенных мутации, 14 мутаций в COII, 13 в COIII . У большинства больных с мутациями в этих генах развиваются нейромышечные синдромы, а некоторые мутации связаны с LHON и SNHL (нейросенсорная глухота) , отдельные мутации гена COI ассоциированы с раком предстательной железы . Мутации митохондриальных генов комплекса V. В гене ATP6, кодирующем субъединицу АТРсинтазы, обнаружено 19 патогенных мутаций , а в гене субъединицы ATP8 идентифицирована лишь одна мутация, A8381G, приводящая к MIDD (сахарный диабет типа 2 и нейросенсорная глухота) . Наиболее распространенное заболевание, ассоциированное с мутацией T8993G гена АТР6, комплекс симптомов, включающих нейропатию, атаксию и пигментную ретинопатию (NARP). Интересно отметить, что в виде NARP мутация T8993G проявляется, когда мутантная мтднк составляет 70 90% всей мтднк в клетке, а при 90 95% эта мутация вызывает развитие наследуемого по материнской линии синдрома Лея (MILS). Подобные синдромы связаны с мутациями T8993C, T9176G и T9176C . Патогенные мутации T8993G и T8993C, приводящие в замене высококонсервативного остатка лейцина в положении 156 на пролин или аргинин, соответственно, снижают ток протонов через АТРсинтазу на 30% . Отмечено, что принадлежность к определенной митохондриальной гаплогруппе может влиять на патогенез заболевания . Патогенные мутации генов рибосомных и транспортных РНК Мутации в генах ррнк и трнк, которые участвуют в биосинтезе белков в митохондриях, могут быть причиной ряда митохондриальных заболеваний . Патогенные мутации генов ррнк. К настоящему времени выявлено 16 патогенных мутаций, изменяющих структуру 12S ррнк; в гене 16S ррнк мутаций, приводящих к заболеваниям, не обнаружено. Наиболее часто в ррнк встречается транзиция G1555A, фенотипически проявляющаяся в виде SNHL. Эта мутация задевает высококонсервативную область 12S ррнк, входящую в состав малой субъединицы рибосомы, в результате чего изменяется аминогликозид-связывающий сайт 12S ррнк, и больные становятся чувствительными к ототоксичным аминогликозидам . Все другие патогенные мутации в гене 12S ррнк также приводят к SNHL . Патогенные мутации генов трнк. Примерно две трети (166 мутаций) патогенных точковых мутаций мтднк локализованы в генах трнк. Мутации, затрагивающие различные трнк, проявляются в виде разнообразных клинических синдромов. Наиболее распространены мутации в генах трнк Leu и трнк Lys. Так, мутация A3243G диагностируется примерно в 80% случаев MELAS (митохондриальная энцефалопатия с инсультоподобными эпизодами и лактатацидозом). Эта транзиция влияет на третичную структуру трнк Lys и процессы метилирования, ацетилирования и тауриновой модификации антикодона, что приводит к нарушению трансляции . Интересно отметить, что мутация A3243G находится, как правило, в состоянии гетероплазмии. При этом соотношение мутантной мтднк и мтднк дикого типа сильно варьирует в различных тканях: наибольшее количество мутантной мтднк обнаруживается в мышечной ткани и клетках головного мозга, наименьшее в лейкоцитах крови . С возрастом содержание мутантных мтднк может увеличиваться во всех тканях, кроме клеток крови, очевидно, вследствие специфического отбора . Помимо MELAS, мутация A3243G ассоциируется с MERRF (миоклональная эпилепсия с разорванными красными мышечными волокнами), CPEO (хроническая прогрессирующая наружная офтальмоплегия), KSS (синдром Кернса Сейра), SNHL и LS . Другая наиболее распространенная мутация транзиция A8344G в гене трнк Lys, в 80% случаев ассоциирована с MERRF . В результате этой мутации изменяется высококонсервативный нуклеотид в псевдоуридиновой петле трнк, что приводит к блокированию митохондриального синтеза белка. Отмечено, что для фенотипического проявления заболевания необходимо, чтобы уровень гетероплазмии достигал 85 90% . Структурные перестройки, затрагивающие большие сегменты мтднк Делеции мтднк лежат в основе некоторых митохондриальных заболеваний и, вероятно, играют ключевую роль в процессе старения постмитотических тканей. В настоящее время рассматриваются две модели происхождения делеций в мтднк . Согласно первой, делеции возникают во время репликации мтднк по асинхронному механизму. Дру-

7 МИТОХОНДРИАЛЬНЫЙ ГЕНОМ И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ 761 гая модель постулирует, что делеции формируются в ходе репарации двухцепочечных разрывов мтднк. Как правило, делеции возникают спорадически и не передаются следующему поколению . Обширная делеция мтднк размером 4977 п.н. (участок) считается наиболее частой причиной KSS, при котором наблюдается прогрессирующая наружная офтальмоплегия, пигментная ретинопатия и ранняя манифестация (до 20 лет) . Основная причина CPEO либо одна обширная делеция, либо множество коротких. CPEO характеризуется прогрессирующим параличом глазодвигательной мышцы, который приводит к уменьшению подвижности глаза и птозу . Синдром Пирсона (PS) довольно редкое заболевание детей раннего возраста, при котором развивается сидеробластная анемия с панцитопенией и экзокринной недостаточностью поджелудочной железы. Заболевание характеризуется крайне тяжелым течением и приводит к ранней смерти; у выживших больных развиваются клинические симптомы KSS. Как правило, при данных синдромах все ткани и органы содержат большое количество мтднк с делециями . Развитие каждого из трех описанных синдромов связано с делециями мтднк определенного размера и локализации, что следует учитывать при постановке диагноза . ПАТОГЕННЫЕ МУТАЦИИ яднк И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ В биогенезе митохондрий принимают участие около 2000 генов ядерного генома , поэтому очевидно, что повреждения яднк также приводят к митохондриальным заболеваниям. Дефекты яднк значительно более разнообразны, нежели дефекты мтднк, они включают как мутации генов системы ОФ и аппарата белкового синтеза в митохондриях, так и мутации генов системы импорта/экспорта в митохондрии, движения митохондрий, слияния/деления митохондрий, транскрипции и репликации мтднк, а также мутации генов различных ферментативных циклов (ЦТК, β-окисление жирных кислот) и других метаболических путей, связанных с функционированием митохондрий . Указанные дефекты яднк и связанные с ними заболевания, которые клинически отличаются от классических митохондриальных, в нашем обзоре не рассматриваются. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПРОЯВЛЕНИЕ МИТОХОНДРИАЛЬНОГО ЗАБОЛЕВАНИЯ Наблюдаемое разнообразие клинических симптомов митохондриальных заболеваний формируется за счет таких факторов, как гетероплазмия, пороговый эффект и эффект бутылочного горлышка (генетической воронки). Существование множества копий мтднк в клетке зачастую приводит к возникновению гетероплазмии, т.е. состоянию, при котором в одной митохондрии, клетке или органе сосуществуют несколько вариантов мтднк, в отличие от гомоплазмии, когда все мтднк идентичны . При делении клетки митохондрии распределяются между дочерними клетками случайным образом вследствие митотической сегрегации, в результате чего дочерние клетки могут различаться уровнем гетероплазмии . Предполагается, что в дочерних (соматических) клетках скорость сдвига в сторону мутантных мтднк, либо мтднк дикого типа определяется составом нуклеоида родительской клетки. И мутантная мтднк, и мтднк дикого типа могут входить в состав одного нуклеоида (гетероплазматический нуклеоид, heteroplasmic nucleoid), либо в отдельные нуклеоиды (гомоплазматический нуклеоид, homoplasmic nucleoid). Если материнская клетка содержит гетероплазматические нуклеоиды, то колебание уровня гетероплазмии дочерних клеток остается незначительным, однако, если нуклеоиды гомоплазматические уровень гетероплазмии дочерних клеток различается весьма значительно и зависит от отбора и генетического дрейфа . Уровень гетероплазмии патогенной мутации мтднк, как правило, определяет тяжесть митохондриального заболевания . При этом для манифестации заболевания необходимо, чтобы количество мутантной мтднк превысило определенный уровень это явление получило название порогового эффекта. Так, в случае MERRF количество мтднк с мутацией A8344G должно составлять 85 90%. Мутация T8993G может приводить к развитию одного заболевания (NARP), если ее содержание (уровень гетероплазмии) достигает 70 90%, однако, при более высоком уровне гетероплазмии, 90 95%, возникают клинические симптомы другого заболевания (MILS) . мтднк млекопитающих, за некоторым исключением, наследуется по материнской линии. Зрелые яйцеклетки содержат по крайней мере копий мтднк, примерно по одной две копии на каждую митохондрию . Несмотря на большое число копий мтднк в яйцеклетке, уже в следующем поколении мтднк может быть представлена новыми вариантами. Так, быстрая сегрегация новых вариантов мтднк (мутации D-петли) у крупного рогатого скота произошла всего за несколько поколений . Это позволило выдвинуть концепцию о влиянии эффекта бутылочного горлышка на одной из стадий развития яйцеклеток (рис. 2). Действительно, последующее изучение ультраструктуры показало, что после оплодотворения происходит череда зиготических делений без деления митохондрий (и, соответственно, без репликации мтднк), в результате чего митохондриальный пул вдвое умень-

8 762 МАЗУНИН и др. Число митохондрий в клетке Оплодотворенная яйцеклетка Бутылочное горлышко (генетическая воронка) Бластоциста Первичные половые клетки Оогонии Примордиальный фолликул Зрелая яйцеклетка Рис. 2. Схематическое представление изменения количества митохондрий в течение развития женских половых клеток у мышей. Указано количество митохондрий на каждой стадии развития. Эффект бутылочного горлышка (генетической воронки) наблюдается на стадии формирования первичных половых клеток. Cправа приведено примерное количество половых клеток у мышей. Адаптировано из . шается с каждым клеточным делением. Так, первичные половые клетки мыши содержат всего примерно 10 митохондрий . Таким образом, при формировании предшественников половых клеток митохондрии составляют лишь малую часть (0.01%) от изначального митохондриального пула зиготы . Предполагается, что количество митохондрий, характерное для зрелой яйцеклетки, восстанавливается за счет лишь некоторых субпопуляций митохондрий примордиальных фолликулов . Поскольку количество митохондрий, характерное для зрелой яйцеклетки, происходит из весьма ограниченного набора митохондрий первичных половых клеток, вновь образовавшиеся митохондрии будут, очевидно, гомогенными (или почти гомогенными) по составу. Другими словами, фундаментальное значение эффекта генетической воронки в эволюции заключается, вероятно, в поддержании гомоплазмии мтднк, минимизируя гетероплазмию ОПРЕДЕЛЕНИЕ МУТАЦИЙ мтднк И УРОВНЯ ГЕТЕРОПЛАЗМИИ Известно, что уровень гетероплазмии во многом определяет фенотипическое проявление мутации, поэтому при проведении молекулярного анализа необходимо оценивать количество мутантных мтднк. Следует заметить, что оценка уровня гетероплазмии уже включает детекцию мутации, в то время как методы обнаружения мутации не всегда учитывают уровень ее гетероплазмии. В табл. 2 указаны основные методы определения уровня гетероплазмии мутаций мтднк. Метод клонирования, дающий достоверные количественные результаты, считается наиболее трудоемким и продолжительным. Более точные результаты при меньшей трудоемкости можно получить с помощью флуоресцентной ПЦР, однако, метод не позволяет выявлять мелкие делеции и вставки. Денатурирующая высокоразрешающая жидкостная хроматография дает воспроизводимые результаты при любых видах мутаций (делеции, вставки, точковые мутации), находящихся в состоянии гетероплазмии. Оценка уровня гетероплазмии с помощью этого метода более точна по сравнению с клонированием и флуоресцентной ПЦР . Для обнаружения и количественной оценки мутаций мтднк использовали также метод ПЦР в реальном времени: превосходные результаты получены как при использовании гидролизуемых зондов (TaqMan), так и интеркалирующего красителя SYBR . В другой работе для детекции мутаций мтднк и количественной оценки уровня гетероплазмии предложено использовать молекулярные маячки (Molecular beacon). Модификация системы TaqМan, заключающаяся в применении специфических праймеров, использована для оценки уровня гетероплазмии мутации A3243G . Сравнение трех методов определения уровня гетероплазмии секвенирования ДНК, Саузерн-блот-анализа, комбинированного метода ПНК (пептидо-нуклеиновые кислоты) и ПЦР в реальном времени, показало, что комбинация ПНК/ПЦР в реальном времени позволяет более точно (количественно) разграничить мутантную мтднк и мтднк дикого типа, нежели секвенирование; Саузерн-блот-анализ не отражает реального уровня гетероплазмии . Как оказалось, наиболее точные оценки дают три метода: SNaPshot , пиросеквенирование и Biplex Invader . Однако при сопоставимой точности Biplex Invader оказался наиболее простым в использовании, а SNaPshot наиболее дорогостоящим . В настоящее время, когда обнаружение мутаций мтднк выходит на поток, предпочтение отдается чиповым технологиям, позволяющим анализировать основные патогенные мутации мтднк сразу во множестве образцов, устанавливая при этом уровень гетероплазмии каждой отдельной мутации .

9 МИТОХОНДРИАЛЬНЫЙ ГЕНОМ И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ 763 Таблица 2. Методы детекции гетероплазмии мутаций мтднк Метод ТЕРАПИЯ ДЕФЕКТОВ ДЫХАТЕЛЬНОЙ ЦЕПИ Ссылка Клонирование Флуоресцентная ПЦР Денатурирующая высокоразрешающая жидкостная хроматография Высокоразрешающий анализ плавления Саузерн-блот-гибридизация Biplex Invader assay Комбинированный метод ПНК/ПЦР в реальном времени Количественная ПЦР в реальном времени Минисеквенирование (SNaPshot) Пиросеквенирование Чиповые технологии К настоящему времени митохондриальные заболевания не поддаются излечению. Используемые в клинической практике стратегии симптоматического лечения включают применение фармакологических средств, специальных диет , а также физических нагрузок . Некоторые патологии, обусловленные мутациями в мтднк, корректируют посредством хирургических вмешательств. Так, при нейросенсорной потере слуха, сопровождающей синдромы MELAS, SNHL и KSS, применяют улитковые имплантаты; нарушение проводимости сердца при KSS можно компенсировать вживлением водителя ритма . Экспериментальные методы (табл. 3), направленные на устранение дефектов дыхательной цепи путем воздействия на генетический аппарат митохондрий, находятся на стадии разработки и их применение в ближайшем будущем сомнительно . Далее будут рассмотрены основные стратегии устранения дефектов дыхательной цепи митохондрий. Стратегия аллотопической экспрессии заключается в создании векторной конструкции, содержащей нормальную копию митохондриального гена. Клетку трансформируют этой конструкцией и после ее встраивания в ядерный геном начинается экспрессия нормального митохондриального гена. Однако не все митохондриальные гены можно экспрессировать таким образом . К настоящему времени подобную процедуру применили на клеточных линиях для устранения дефектов генов ND1, ND4 и ATP6 . Ксенотопическая экспрессия подразумевает использование генов субъединиц комплексов ОФ других видов организмов. Так, для компенсации дефектов комплекса I в клетках млекопитающих применили дрожжевую NADH-оксидазу (Ndi1) . В другой работе дефекты комплекса I устраняли путем доставки в ядро и последующей экспрессии гена альтернативной оксидазы (AOX, cyanide-insensitive alternative oxidase) из асцидии . Теоретически, альтернативные комплексы ОФ могут компенсировать работу дефектного комплекса вне зависимости от мутации, которая нарушила работу комплекса. Однако большинство таких альтернативных комплексов не способны перекачивать протоны из матрикса в межмембранное пространство . Несмотря на то, что остаются сомнения в возможности импорта трнк в митохондрии (в норме трнк в митохондрию не импортируется, поскольку Таблица 3. Методы генной терапии дефектов дыхательной цепи Методы генной терапии дефектов дыхательной цепи Заболевание Мутация мтднк аллотопическая экспрессия ксенотопическая экспрессия коррекция системы трансляции (трнк) эндонуклеазы рестрикции пептидо-нуклеиновые кислоты метилазы типа цинковые пальцы LHON A11778G G3460G NARP/MILS T8993G MERRF A8344G G611A MELAS A3234G Примечание. Сокращения, как в табл. 1.

10 764 МАЗУНИН и др. полностью там синтезируется), эксперименты в этом направлении продолжаются . Так, используя комплекс импорта трнк (RIC, trna import complex) из Leishmania tropica, удалось доставить трнк Lys в митохондрии, компенсировав тем самым дефект трансляции, и восстановить клеточное дыхание . Патогенные мутации трнк компенсировали при помощи модификации либо гиперэкспрессии соответствующих аминоацил-трнксинтетаз . Стратегия манипулирования уровнем гетероплазмии состоит в использовании молекулярных конструкций, которые специфически связываются с определенной нуклеотидной последовательностью в мтднк, блокируя ее транскрипцию и/или репликацию. Изменять уровень гетероплазмии в сторону мтднк дикого типа могут эндонуклеазы рестрикции, которые узнают определенные сайты, возникшие после появления мутации, и специфически разрезают мутантную мтднк . Интересно, что участок узнавания определенной эндонуклеазой рестрикции не обязательно должен быть уникальным: мутантная мтднк и мтднк дикого типа могут отличаться по количеству сайтов рестрикции . Использование ПНК, представляющих собой линейные полимеры N-(2-аминоэтил)-глицина, замещенные по атому азота аминоэтильной группы производными азотистых оснований, и способных к нековалентному взаимодействию с азотистыми основаниями ДНК и РНК, также весьма перспективно для изменения соотношения мтднк, мутантных и дикого типа. Эти химические соединения специфически связываются с мутантной мтднк, блокируя репликацию . Модифицированный вариант ПНК, названный CMCO (cell membrane crossing oligomers), имеет бо" льшую полярность, нежели ПНК, и лучше проникает в митохондрию . Более того, оказалось, что связываться с определенной нуклеотидной последовательностью в мтднк могут также белки типа цинковые пальцы . Перемещение нормальных митохондрий из стволовых и соматических клеток в клетки с дефектными митохондриями с последующим восстановлением клеточного дыхания в перспективе может применяться при митохондриальных заболеваниях . Интересным направлением в разработке стратегий лечения митохондриальных заболеваний считается доставка ДНК/белка непосредственно в дефектные митохондрии. С этой целью используют жирорастворимые капсулы липосомы, в которые упаковывают ДНК/белки. Такие капсулы, имея сродство к митохондриальной мембране, специфически связываются с митохондриями и, сливаясь с ними, высвобождают в митохондриальный матрикс свое содержимое . Основная проблема терапии митохондриальных заболеваний, как и всех наследственных заболеваний, заключается в отсутствии возможности адресной доставки необходимого вещества во все митохондрии всех (либо определенных) клеток человека. Таким образом, предотвращение передачи патогенных мутаций мтднк от матери детям рассматривается в данный момент в качестве единственной альтернативы. СТРАТЕГИИ ПРЕДОТВРАЩЕНИЯ ПЕРЕДАЧИ ПАТОГЕННЫХ МУТАЦИЙ мтднк Предотвращение передачи мутантных мтднк потомству представляется особо актуальной проблемой на данном этапе развития митохондриальной медицины . Предотвратить передачу мутантной мтднк следующему поколению можно с помощью донорской яйцеклетки. Полученный в результате экстракорпорального оплодотворения (ЭКО) эмбрион имплантируют в матку, таким образом будущему ребенку удается избежать митохондриального заболевания, которым страдает его мать . Важно учитывать, что привлечение родственниц со стороны матери (в качестве донора яйцеклетки) не рекомендуется, поскольку они могут быть носителями патогенной мутации мтднк. Пренатальная диагностика (ПНД) с целью взятия плодного материала для последующего лабораторного исследования имеет серьезные ограничения из-за неравномерного распределения мутаций мтднк в различных тканях и органах. Утверждены критерии проведения ПНД митохондриальных заболеваний . Согласно этим критериям достоверно интерпретировать результаты ПНД можно лишь в случае мутаций с высокой степенью корреляции между уровнем гетероплазмии и тяжестью заболевания, равномерным распределением во всех тканях и уровнем гетероплазмии, который не меняется в течение жизни. Как оказалось, такие требования справедливы лишь для мутаций T8993G/C. Преимплантационная генетическая диагностика (ПГД) диагностика генетических аномалий у эмбрионов до момента их имплантации в матку. Такую диагностику можно проводить на отдельных клетках эмбрионов, полученных в результате процедуры ЭКО . Для выявления мутаций мтднк можно использовать как полярное тельце, так и один либо два бластомера раннего эмбриона (до 8-клеточной стадии), поскольку все эти клетки обладают одинаковым уровнем гетероплазмии. Установлено, что эффективность оценки уровня гетероплазмии в бластомерах значительно выше, нежели в полярном тельце . Эмбрион имплантируют в матку в случае полного отсутствия патогенных мутаций, либо при низком уровне гетероплазмии, поскольку критерии, принятые для ПНД , здесь также справедливы. Нужно отметить, что эту процедуру применяли лишь дважды .

11 МИТОХОНДРИАЛЬНЫЙ ГЕНОМ И МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ 765 Несомненное преимущество ПГД перед ПНД состоит в возможности сохранить беременность . Цитоплазматический транспорт представляет собой перенос нормально функционирующих митохондрий (из другой яйцеклетки или зиготы) в яйцеклетку, содержащую дефектные митохондрии, чтобы снизить количество дефектных митохондрий и компенсировать нарушение выработки энергии . Однако результаты экспериментов по переносу донорской цитоплазмы в пораженную яйцеклетку для последующего распространения донорских митохондрий оказались неутешительными: уровень хромосомных аномалий у новорожденных значительно превышал средний показатель . Как оказалось, помимо митохондрий с цитоплазмой переносятся мрнк, белки и другие факторы, которые вносят вклад в новое окружение ядерного генома . Ядерный транспорт теоретически может выполняться на разных стадиях развития яйцеклетки/зиготы в случае пересадки: а) зародышевого пузырька; б) хромосом зрелой яйцеклетки; в) пронуклеусов; г) ядра одного из бластомеров . В связи с этическими проблемами клонирования следует уточнить, что первые три этапа не связаны с клонированием, поскольку на этих стадиях еще не произошло дублирования яднк. Однако использование ядра одного из бластомеров это уже, по определению, клонирование, запрещенное в отношении человека (59/280 Декларация Организации Объединенных Наций о клонировании человека от 8 марта 2005; Законопроект о продлении запрета на клонирование человека, Россия, от 22 января 2010). Недавно удалось переместить ядерный материал зрелой яйцеклетки примата (Macaca mulatta) на стадии метафазы II в энуклеированную яйцеклетку . Анализ мтднк показал, что во время переноса хромосом митохондрии не переместились. Уникальность процедуры заключается в выборе нужной стадии (метафаза II), когда кариопласт яйцеклетки свободен от митохондрий. Другой способ, который позволяет избежать переноса митохондрий вместе с яднк их уничтожение . ЗАКЛЮЧЕНИЕ Несмотря на значительный прогресс, достигнутый с момента установления причинно-следственной связи между мутацией мтднк и заболеванием человека , вылечиться от митохондриальных болезней в настоящее время практически невозможно. В первую очередь, это связано с пробелами в понимании биогенеза митохондрий. Однако по мере развития физико-химических, молекулярно-генетических и биоинформатических методов данные о структуре и функциях митохондрий постоянно корректируются и дополняются. Кроме того, существует большая пропасть между молекулярными и патофизиологическими исследованиями, поскольку за исключением мышиных моделей (mitomouse) и клеточных линий , человек остается практически единственным объектом исследований, что, естественно, вносит массу ограничений в связи с возможностью опасных для здоровья/жизни последствий. Тем не менее, существуют возможности избежать наследования патогенной митохондриальной мутации, либо отсрочить развитие заболевания, вызванного нарушением функции митохондрий. Авторы признательны Г.М. Дымшицу (ИЦиГ СО РАН) и К.Ю. Попадьину (ИППИ РАН) за полезные замечания по прочтении рукописи. Работа выполнена при поддержке Российского фонда фундаментальных исследований (а). СПИСОК ЛИТЕРАТУРЫ 1. Сукерник Р.И., Дербенева О.А., Стариковская Е.Б., Володько Н.В., Михайловская И.Е., Бычков И.Ю., Лотт М.Т., Браун М.Д., Уоллес Д.К Митохондриальный геном и митохондриальные болезни человека. Генетика. 38, DiMauro S., Schon E.A Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, Di Donato S Multisystem manifestations of mitochondrial disorders. J. Neurol. 256, Ernster L., Ikkos D., Luft R Enzymic activities of human skeletal muscle mitochondria: a tool in clinical metabolic research. Nature. 184, Luft R., Ikkos D., Palmieri G., Ernster L., Afzelius B A case of severe hypermetabolism of monthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J. Clin. Ivest. 41, Holt I.J., Harding A.E., Morgan Hughes J.A Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 331, Wallace D.C., Singh G., Lott M.T., Hodge J.A., Shurr T.G., Lezza A.M., Elsas L.J. 2 nd., Nikoskelainen E.K Mitochondrial DNA mutation associated with Leber s hereditary optic neuropathy. Science. 242, van den Ouweland J.M., Lemkes H.H., Ruitenbeek W., Sandkuijl L.A., de Vijlder M.F., Struyvenberg P.A., van de Kamp J.J., Maassen J.A Mutation in mitochondrial trna(leu)(uur) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat. Genet. 1, Tatuch Y., Christodoulou J., Feigenbaum A., Clarke J.T., Wherret J., Smith C., Rudd N., Petrova-Benedict R., Robinson B.H Heteroplasmic mtdna mutation (T G) at 8993 can cause Leigh disease when the percentage of abnormal mtdna is high. Am. J. Hum. Genet. 50, A Human Mitochondrial Genome Database. www. mitomap.org, 2009.

12 766 МАЗУНИН и др. 11. Schaefer A.M., McFarland R., Blakely E.L., He L., Whittaker R.G., Taylor R.W., Chinnery P.F., Turnbull D.M Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 63, Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G Sequence and organization of the human mitochondrial genome. Nature. 290, Spelbrink J.N Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB. Life. 62, Iborra F.J., Kimura H., Cook P.R The functional organization of mitochondrial genomes in human cells. BMC. Biol. 24, Holt I.J., He J., Mao C.C., Boyd-Kirkup J.D., Martinsson P., Sembongi H., Reyes A., Spelbrink J.N Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion. 7, Bogenhagen D.F., Rousseau D., Burke S The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 8, He J., Mao C.C., Reyes A., Sembongi H., Di Re M., Granycome C., Clippingdale A.B., Fearnley I.M., Harbour M., Robinson A.J., Reichelt S., Spelbrink J.N., Walker J.E., Holt I.J The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell. Biol. 15, Di Re M., Sembongi H., He J., Reyes A., Yasukawa T., Martinsson P., Bailey L.J., Goffart S., Boyd-Kirkup J.D., Wong T.S., Fersht A.R., Spelbrink J.N., Holt I.J Nucl. Acids Res. 37, Gilkerson R.W., Schon E.A., Hernandez E., Davidson M.M Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J. Cell. Biol. 30, Jacobs H.T., Lehtinen S.N., Spelbrink J.N No sex please, we re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtdna. BioEssays. 22, D Aurelio M., Gajewski C.D., Lin M.T., Mauck W.M., Shao L.Z., Lenaz G., Moraes C.T., Manfredi G Heterologous mitochondrial DNA recombination in human cells. Hum. Mol. Genet. 15, Clayton D.A Replication of animal mitochondrial DNA. Cell. 28, Clayton D.A Mitochondrial DNA replication: what we know. IUBMB. Life. 55, Holt I.J., Lorimer H.E., Jacobs H.T Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 100, Fish J., Raule N., Attardi G Discovery of a major D-loop replication origin reveals two modes of human mtdna synthesis. Science. 306, Korhonen J.A., Pham X.H., Pellegrini M., Falkenberg M Reconstitution of a minimal mtdna replisome in vitro. EMBO J. 23, Holt I Mitochondrial DNA replication and repair: all a flap. Trends Biochem. Sci. 34, Ojala D., Montoya J., Attardi G trna punctuation model of RNA processing in human mitochondria. Nature. 290, Nagaike T., Suzuki T., Ueda T Polyadenylation in mammalian mitochondria: insights from recent studies. Biochim. Biophys. Acta. 1779, Asin-Cayuela J., Gustafsson C.M Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem. Sci. 32, Scarpulla R.C Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, Сологуб М.Ю., Кочетков С.Н., Темяков Д.Е Транскрипция и ее регуляция в митохондриях млекопитающих и человека. Молекуляр. биология. 43, Spremulli L.L., Coursey A., Navratil T., Hunter S.E Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. Prog. Nucleic Acids Res. Mol. Biol. 77, Coenen M.J., Antonicka H., Ugalde C., Sasarman F., Rossi R., Heister J.G., Newbold R.F., Trijbels F.J., van den Heuvel L.P., Shoubridge E.A., Smeitink J.A Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N. Engl. J. Med. 351, Rorbach J., Soleimanpour-Lichaei R., Lightowlers R.N., Chrzanowska-Lightowlers Z.M How do mammalian mitochondria synthesize proteins? Biochem. Soc. Trans. 35, Hatefi Y The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, Moser C.C., Farid T.A., Chobot S.E., Dutton P.L Electron tunneling chains of mitochondria. Biochim. Biophys. Acta. 1757, Lenaz G., Genova M.L Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid. Redox Signal. 12, Zickermann V., Dröse S., Tocilescu M.A., Zwicker K., Kerscher S., Brandt U Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I). J. Bioenerg. Biomembr. 40, Hunte C., Palsdottir H., Trumpower B.L Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett. 12, Belevich I., Verkhovsky M.I Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid. Redox Signal. 10, von Ballmoos C., Wiedenmann A., Dimroth P Essentials for ATP synthesis by F1F0 ATP synthases. Annu. Rev. Biochem. 78, Schaegger H Respiratory Chain Supercomplexes. IUBMB. Life. 52, Wittig I., Carrozzo R., Santorelli F.M., Schägger H Supercomplexes and subcomplexes of mito-


МИТОХОНДРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ ЧЕЛОВЕКА Сагандыкова А.К. Оренбургский Государственный Медицинский Университет Оренбург, Россия HUMAN MITOCHONDRIAL DISEASES Sagandykova A. K. Orenburg State Medical University

ОСОБЕННОСТИ МИТОХОНДРИАЛЬНОИ ДНК У БОЛЬНЫХ ЭНЦЕФАЛОМИОПАТИЯМИ Н.А. ЛИТВИНОВА, А.С. ВОРОНКОВА, В.С. СУХОРУКОВ Научно-исследовательский клинический институт педиатрии ГБОУ ВПО РНИМУ им. Н.И. Пирогова МИТОХОНДРИАЛЬНЫЕ

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА 1. ВВЕДЕНИЕ Предмет и задачи молекулярной биологии. История ее развития и основные достижения. 2. СТРОЕНИЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НУКЛЕИНОВЫХ КИСЛОТ Химический состав

Генетика Прогноз эволюции болезни Пренатальная диагностика Новые методы диагностики Понимание патогенеза Зачем нужны врачу генетические знания? Предсимптоматическая диагностика Планирование семьи Клеточная

ГЕНЕТИКА МИТОХОНДРИЙ. Часть 2 Лекция 4 раздел ГЕНЕТИКА КЛЕТОЧНЫХ ОРГАНЕЛЛ дисциплина СТРУКТУРНАЯ ГЕНОМИКА Словарик Стренга (strand) цепь, нить макромолекулы Генетика клеточных органелл. Лекция 3. Генетика

Харьковский национальный медицинский университет Кафедра медицинской генетики Заведующий кафедрой: д.мед.н., лауреат государственной премии Украины для молодых ученых в области науки и техники Гречанина

Задания для внеаудиторной работы студентов специальности медицинская биохимия 1 курс. Резюме - краткое изложение информации по какому-либо изученному материалу. Необходимо изложить пройденную тему в 5-7

Биохимия Лекция 3 ДНК Дезоксирибонуклеи новая кислота (ДНК) макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых

Ррнк Рибосомальная РНК входит в состав рибосом, сложных надмолекулярных структур, которые состоят из четырех типов ррнк и нескольких десятков белков. Рибосомальная РНК составляет большую долю (до 80%)

Аннотация проекта (ПНИЭР), выполняемого в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 2020 годы» Номер Соглашения о предоставлении

ФЕДЕРАЛЬНОЕ АГЕНСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ РОССИЙСКАЯ АКАДЕМИЯ НАУК ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЦИТОЛОГИИ РОССИЙСКОЙ АКАДЕМИИ НАУК Билеты вступительного экзамена в аспирантуру

Репликация ДНК Биосинтез белка Репликация удвоение молекулы ДНК Происходит в S (синтетический)период митотического цикла Образующиеся дочерние молекулы - точные копии материнской Принципы репликации Комплементарность

Геном органоидов Варианты взаимодействия ядерного генома и генома органоидов: - закодированные в хромосомной ДНК белки, танспортируются в органоид - органоидные мутации могут маскироваться ядерными генами

Группа Ф.И.О. Билет 1 1. Какие из перечисленных макромолекул обладают какими-либо общими характеристиками: ДНК, РНК, белки, углеводы, липиды? Укажите, какие именно общие свойства Вы выделяете для каждого

Глава 9 Транскрипция и процессинг РНК 1. СS Кэпирование про-мрнк обеспечивает: a) репликацию ДНК; b) репарацию ДНК; c) стабильность молекул РНК; d) денатурацию ДНК; e) сплайсинг. 2. CS В транскрипции участвует:

Глава 11 Методы анализа генов 1. CS Ферменты рестрикции: a) используются в ПЦР; b) узнают одноцепочечную ДНК; c) узнают и разрезают специфические двуцепочечные последовательности ДНК; d) встречаются у

МОЛЕКУЛЯРНАЯ ГЕНТИКА МОЛЕКУЛЯРНАЯ ГЕНЕТИКА. РЕПЛИКАЦИЯ ДНК ЭУКАРИОТ Организм Количество репликонов Средний размер репликона, тыс.п.н. Скорость движения репликативной вилки, п.н./сек. 1 4200 50000 500 40

P A R T N E R " S P R E S E N T A T I O N МОЛЕКУЛЯРНО- ГЕНЕТИЧЕСКИЙ МЕТОД Вороная Ю.М 1мед 1группа S E C T I O N F O U R МОЛЕКУЛЯРНО - ГЕНЕТИЧЕСКИЕ МЕТОДЫ Большая и разнообразная группа методов, предназначенная

ВАРИАНТ 1 Часть 1 Ответами к заданиям 1-10 являются последовательность цифр, число или слово (словосочетание). Запишите ответы в поля ответов в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ 1 справа

Введение в молекулярную биологию (для информатиков) Александр Предеус Институт биоинформатики Урок 1.1 Основные концепции молекулярной биологии молекулы, составляющие клетку биополимеры: ДНК, РНК, протеины

Предлагаемая книга является первым наиболее полным и авторитетным руководством по интенсивно развивающейся области науки молекулярной генетике, аналогов которому в мировой научной литературе нет. Издание

Описание основных митохондриальных заболеваний Органоспецифические митохондриальные заболевания... 1 Митохондриальная кардиомиопатия... 1 Митохондриальная миопатия... 1 Наследственная нейропатия зрительного

12 МЕТОДЫ АНАЛИЗА ГЕНОВ Гены являются молекулярным субстратом наследственности. Структура и локализация генов в геноме определяет свойства организма. При функционировании генома и в результате взаимодействия

ГЕНЕТИКА ПЛАСТИД И МИТОХОНДРИЙ РАСТЕНИЙ Лекция 4 раздел ГЕНЕТИКА КЛЕТОЧНЫХ ОРГАНЕЛЛ дисциплина СТРУКТУРНАЯ ГЕНОМИКА Словарик Пропластиды предшественники остальных типов пластид Лейкопласты пластиды запасающих

ЭПИГЕНЕТИКА Грин Инга Ростиславовна Мультимедийный курс для студентов биологов Китайско-российского института. Структура генома эукариот Геном Эукариот Размер: 1,2x10 6 1,5x10 11 п.н. Генов: 6000-31000

Вопрос 34 3 В биологии развития один из самых используемых модельных организмов обыкновенная шпорцевая лягушка (Xenopus laevis). Ученые Тартуского университета кафедры генетики и дарвинизма провели опыт,

Лекция 7 Хлоропласты строение и функции. Основы фотосинтеза. Митохондрии и хлоропласты как полуавтономные органеллы. Пероксисомы. Растительная клетка с хлоропластами и вакуолью Хлоропласт, вид на срезе

*Генная Инженерия Генетическая инженерия Генетическая инженерия (генная инженерия) совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток),

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН Западно-Казахстанский государственный университет им.м.утемисова РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА MONI 1101 Молекулярные основы наследственности и изменчивости

Занятие 7. Тема: ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА (занятие II) " " 200 г Цель занятия: изучить классификацию и свойства генов; уровни структурно-функциональной организации наследственного материала

ПОУРОЧНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС 21 ПОУРОЧНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ «БИОЛОГИЯ. 10 КЛАСС. ПРОФИЛЬНЫЙ УРОВЕНЬ» Планирование составлено на основе программы «Биология. 10 11 классы. Профильный

Генный уровень организации наследственного материала. Ген - единица наследственной информации: занимающая определенное положение в хромосоме, контролирующая выполнение определенной функции, определяющая

Рестриктазы - группа бактериальных нуклеаз. Рестриктазы - это ферменты, обладающие эндонуклеазной активностью, которые специфически гидролизуют молекулы двухцепочечных ДНК при наличии в них определенных

Федеральное агентство научных организаций (ФАНО России) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЦИТОЛОГИИ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИНЦ РАН) УТВЕРЖДАЮ: ВРИО директора ИНЦ РАН академик

Клетка БИОЛОГИЯ КЛЕТКИ И ДНК КЛЕТКА Глава 1: Клетки Что такое клетка? Все организмы состоят из клеток, будь то одноклеточные организмы бактерии, либо многоклеточные, такие как растения и животные. Клетка

Молекулярная биология. Эволюция. Надежда Маркина, ИБХ РАН, 2015 Основные термины Биополимер химическое соединение, состоящее из повторяющихся звеньев (остатков мономеров) и способное образовываться в живой

МОУ «Лицей 3 им. П.А. Столыпина г. Ртищево Саратовской области» Демонстрационный вариант контрольной работы для проведения промежуточной аттестации по биологии 10 класс 1.Развитие организма животного от

Контрольная работа за первое полугодие в 10 классе. Вариант 1. ЧАСТЬ 1 А1. К прокариотам относятся 1) растения 2) животные 3) грибы 4) бактерии и цианобактерии А2.Принцип комплементарности лежит в основе

МОЛЕКУЛЯРНАЯ ГЕНЕТИКА МОЛЕКУЛЯРНАЯ ГЕНЕТИКА. ПРОЦЕССИНГ РИБОСОМАЛЬНЫХ И ТРАНСПОРТНЫХ РНК. синтез молекул РНК, образование первичного транскрипта (пре-рнк) (посттранскрипционные модификации) модификация

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ставропольский государственный медицинский университет» Министерства здравоохранения Российской Федерации Кафедра биотехнологии

2 1. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ: В результате обучения ученик должен знать /понимать основные положения биологических теорий (клеточная); сущность законов Г.Менделя, закономерностей изменчивости.

Генетика БИОЛОГИЯ КЛЕТКИ И ДНК ГЕНЕТИКА Глава 1: Гены и ДНК Что такое ДНК? ДНК это длинная макромолекула внутри клетки, несущая в себе генетическую информацию о синтезируемых белках. Генетический код образован

Синтез ДНК Реализация наследственной информации Заведующий кафедрой биологии, профессор Колесников О.Л. Особенности ДНК-полимеразы Синтез новой цепи идет в направлении от 5 к 3 концу цепи Фермент может

Занятие 4. ТРАНСКРИПЦИЯ ДНК Цель занятия: ознакомиться с процессами транскрипции ДНК у про- и эукариот и особенностями организации их генов. 1. Транскрипция прокариот 2. Транскрипция эукариот 3. Нематричный

Молекулярная биология Лекция 12. Регуляция. Скоблов Михаил Юрьевич Часть 1. Регуляция активности генов у прокариот Парадокс количества и сложности: Эволюционное качество достигается не количеством генов,

10 класс Контрольная работа по биологии 1 вариант А1. Какой уровень организации живого служит основным объектом изучения цитологии? 1) Клеточный 2) Популяционно-видовой 3) Биогеоценотический 4) биосферный

НОВЫЕ ДАННЫЕ О ЦИТОПЛАЗМАТИЧЕСКОЙ НАСЛЕДСТВЕННОСТИ продолжение Митохондриальные Митохондриальные цитопатии цитопатии (МЦ) (МЦ) разнородная разнородная группа мультисистемных мультисистемных расстройств,

Составляющие элементы процесса транскрипции РНК-полимераза + НТФ + ДНК-матрица РНК + ДНК-матрица + ФФн = РНК-полимераза кор-фермент σ-фактор Ген Промотор ДНКматрица ω: восстанавливает РНК полимеразу обратно

Молекулярная биология Лекция 11. Разнообразие реализации природных молекул. Скоблов Михаил Юрьевич Часть 1. Межвидовое разнообразие Человек и шимпанзе Человек и шимпанзе Человек и шимпанзе Поэтому мы не

Биология. 10 класс. Демонстрационный вариант 1 Итоговая диагностическая работа по БИОЛОГИИ 10 класс базовый уровень Демонстрационный вариант На выполнение работы по биологии даётся 45 минут. Работа включает

Происхождение, то есть были приобретены предками эукариот лишь однажды.

На основании сходства в последовательностях нуклеотидов ДНК ближайшими родственниками митохондрий среди ныне живущих прокариот считают альфа-протеобактерий (в частности, выдвигалась гипотеза, что к митохондриям близки риккетсии). Сравнительный анализ геномов митохондрий показывает, что в ходе эволюции происходило постепенное перемещение генов предков современных митохондрий в ядро клетки. Необъяснимыми с эволюционной точки зрения остаются некоторые особенности митохондриальной ДНК (например, довольно большое число интронов , нетрадиционное использование триплетов и другие). Ввиду ограниченного размера митохондриального генома бо́льшая часть митохондриальных белков кодируется в ядре. При этом бо́льшая часть митохондриальных тРНК кодируются митохондриальным геномом.

Формы и число молекул митохондриальной ДНК

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика , которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе) .

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков . Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву », гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линии

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий . Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы , медоносных пчел и цикад .

Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей, при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец и клонированного крупного рогатого скота.

Наследование по отцовской линии у людей

До недавнего времени считалось, что митохондрии человека наследуются только по материнской линии. Был известен лишь один-единственный случай пациента, у которого в 2002 году достоверно обнаружили отцовскую митохондриальную ДНК .

Лишь недавнее исследование 2018 года показало, что митохондриальная ДНК человека иногда всё же может передаваться и по отцовской линии. Небольшое количество митохондрий отца может попасть в яйцеклетку матери вместе с цитоплазмой сперматозоида, но, как правило, отцовские митохондрии после этого из зиготы исчезают. Однако, было обнаружено, что у некоторых людей существует «мутация, которая помогает выживать митохондриям отца» .

Геном митохондрий

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов - исследование закончено в 1981 году, по другому источнику 16569 пар ) и содержит 37 генов - 13 кодируют белки, 22 - гены тРНК , 2 - рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Генный состав мтДНК разных видов растений, грибов и особенно протистов различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов , в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании , а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы , микроспоридий и лямблий) не содержат ДНК.

Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe ) до 100 314 (сордариомицет Podospora anserina ) пар нуклеотидов .

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК .

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНК Гены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q - цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтаза MT-ATP6, MT-ATP8
рРНК MT-RNR1 (12S), MT-RNR2 (16S)
тРНК MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1 , MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Особенности митохондриальной ДНК

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.

Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG - терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан .

Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК , которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин , который при транскрипции гена в РНК заменяет тимин .

Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК .

В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях, кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3"-концевым терминаторным кодонам .

Применение

Кроме использования при построении различных филогенетических теорий, изучение митохондриального генома - основной инструмент при проведении идентификации . Возможность идентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

Последовательность участка гена субъединицы I цитохром с-оксидазы, кодируемого в митохондриальной ДНК, широко используется в проектах, связанных с ДНК-баркодированием животных - определением принадлежности организма к тому или иному таксону на основе коротких маркеров в его ДНК . Для баркодирования растений используется преимущественно комбинация двух маркёров в пластидной ДНК .

Группа Шухрата Миталипова из центра эмбриональных клеток и генной терапии Орегонского университета разработала метод замены митохондриальной ДНК для лечения наследственных митохондриальных заболеваний. Сейчас в Великобритании начаты клинические испытания этого метода, получившего неофициальное название «3-parent baby technique» - «ребенок от трех родителей». Известно также о рождении в результате этой процедуры ребенка в Мексике .

Примечания

  1. Джинкс Д., Нехромосомная наследственность, пер. с англ., М., 1966; Сэджер Р., Гены вне хромосом, в кн.: Молекулы и клетки, пер. с англ., М., 1966.
  2. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm , Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593-629. PMID 14086138
  3. Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna , Австрия): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127-132.
  4. Iborra F. J., Kimura H., Cook P. R. The functional organization of mitochondrial genomes in human cells (англ.) // BMC Biol. (англ.) русск. : journal. - 2004. - Vol. 2 . - P. 9 . - DOI :10.1186/1741-7007-2-9 . - PMID 15157274 .
  5. Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6
  6. Wiesner R. J., Ruegg J. C., Morano I. Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues (англ.) // Biochim Biophys Acta. (англ.) русск. : journal. - 1992. - Vol. 183 . - P. 553-559 . - PMID 1550563 .
  7. doi:10.1016/j.exppara.2006.04.005 (недоступная ссылка)
  8. Alexeyev, Mikhail F.; LeDoux, Susan P.; Wilson, Glenn L. Mitochondrial DNA and aging (неопр.) // Clinical Science. - 2004. - July (т. 107 , № 4 ). - С. 355-364 . - DOI :10.1042/CS20040148 . - PMID 15279618 .
  9. Ченцов Ю. С. Общая цитология. - 3-е изд. - МГУ, 1995. - 384 с. - ISBN 5-211-03055-9 .
  10. Sutovsky, P., et. al. Ubiquitin tag for sperm mitochondria (англ.) // Nature . - Nov. 25, 1999. - Vol. 402 . - P. 371-372 . - DOI :10.1038/46466 . - PMID 10586873 . Discussed in
  11. Vilà C., Savolainen P., Maldonado J. E., and Amorin I. R. Multiple and Ancient Origins of the Domestic Dog (англ.) // Science : journal. - 1997. - 13 June (vol. 276 ). - P. 1687-1689 . - ISSN 0036-8075 . - DOI :10.1126/science.276.5319.1687 . - PMID 9180076 .
  12. Hoeh W. R., Blakley K. H., Brown W. M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA (англ.) // Science: journal. - 1991. - Vol. 251 . - P. 1488-1490 . - DOI :10.1126/science.1672472 . - PMID 1672472 .
  13. Penman, Danny . Mitochondria can be inherited from both parents , NewScientist.com (23 августа 2002). Дата обращения 5 февраля 2008.
  14. Kondo R., Matsuura E. T., Chigusa S. I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method (англ.) // Genet. Res. (англ.) русск. : journal. - 1992. - Vol. 59 , no. 2 . - P. 81-4 . - PMID 1628820 .
  15. Meusel M. S., Moritz R. F. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs (англ.) // Curr. Genet. : journal. - 1993. - Vol. 24 , no. 6 . - P. 539-543 . - DOI :10.1007/BF00351719 . - PMID 8299176 .
  16. Fontaine, K. M., Cooley, J. R., Simon, C. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.) (исп.) // PLoS One. : diario. - 2007. - V. 9 . - P. e892 . - DOI :10.1371/journal.pone.0000892 .
  17. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice (англ.) // Nature. - 1991. - Vol. 352 , no. 6332 . - P. 255-257 . - DOI :10.1038/352255a0 . - PMID 1857422 .
  18. Shitara H., Hayashi J. I., Takahama S., Kaneda H., Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage (англ.) // Genetics: journal. - 1998. - Vol. 148 , no. 2 . - P. 851-857 . - PMID 9504930 .

Что такое митохондриальная ДНК?

Митохондриальная ДНК (мтДНК) - представляет собой ДНК, расположенную в митохондриях, клеточных органеллах внутри эукариотических клеток, которые преобразуют химическую энергию из пищи в той форме, в которой клетки могут ее использовать - аденозинтрифосфата (АТФ). Митохондриальная ДНК являет собой лишь небольшую часть ДНК в эукариотической клетке; большую часть ДНК можно обнаружить в ядре клетки, у растений и водорослей, а также в пластидах, таких как хлоропласты.

У людей 16569 пар оснований митохондриальной ДНК кодируют всего 37 генов. Человеческая митохондриальная ДНК была первой значительной частью генома человека, подлежащей секвенированию. У большинства видов, включая людей, мтДНК наследуется только от матери.

Посколько мтДНК животных развивается быстрее, чем ядерные генетические маркеры, она представляет собой основу филогенетики и эволюционной биологии. Это стало важным пунктом в антропологии и биогеографии, так как позволяет изучать взаимосвязь популяций.

Гипотезы происхождения митохондрий

Ядерная и митохондриальная ДНК, как полагают, имеет разное эволюционное происхождение, причем мтДНК выведена из кольцевых геномов бактерий, которые были поглощены ранними предками современных эукариотических клеток. Эта теория называется эндосимбиотической теорией. По оценкам, каждая митохондрия содержит копии 2-10 мтДНК. В клетках существующих организмов подавляющее большинство белков, присутствующих в митохондриях (численность около 1500 различных типов у млекопитающих) кодируются ядерной ДНК, но гены для некоторых из них, если не большинство, считаются первоначально бактериальными, с тех пор они были перенесены в эукариотическое ядро ​​во время эволюции.

Обсуждаются причины, по которым митохондрии сохраняют некоторые гены. Существование у некоторых видов митохондриального происхождения органелл, не имеющих генома, позволяет предполагать, что возможна полная потеря гена, а перенос митохондриальных генов в ядро ​​имеет ряд преимуществ. Трудность ориентации дистанционно производимых гидрофобных белковых продуктов в митохондриях является одной из гипотез почему некоторые гены сохраняются в мтДНК. Совместная локализация для окислительно-восстановительного регулирования является другой теорией, ссылаясь на желательность локализованного контроля над митохондриальными механизмами. Недавний анализ широкого спектра митохондриальных геномов предполагает, что обе эти функции могут диктовать удержание митохондриального гена.

Генетическая экспертиза мтДНК

В большинстве многоклеточных организмов, мтДНК наследуется от матери (по материнской линии). Для этого механизмы включают простое разведение (яйцо содержит в среднем 200000 молекул мтДНК, тогда как здоровая сперма человека содержит в среднем 5 молекул), деградацию спермы мтДНК в мужских половых путях, в оплодотворенной яйцеклетке, и, по крайней мере, в нескольких организмах, неспособность мтДНК спермы проникать в яйцо. Каким бы ни был механизм, это однополярное наследование - наследования мтДНК, которое встречается у большинства животных, растений и грибов.

Наследование по материнской линии

При половом размножении митохондрии обычно унаследованы исключительно от матери; митохондрии в сперме млекопитающих обычно уничтожаются яйцеклеткой после оплодотворения. Кроме того, большинство митохондрий присутствует у основания хвоста сперматозоида, который используется для движения клеток спермы; иногда во время оплодотворения хвост теряется. В 1999 году сообщалось, что отцовские митохондрии сперматозоида (содержащие мтДНК) отмечены убиквитином для последующего разрушения внутри эмбриона. Некоторые методы оплодотворения in vitro, в частности, инъекция спермы в ооцит могут мешать этому.

Тот факт, что митохондриальная ДНК наследуется по материнской линии позволяет генеалогическим исследователям проследить материнскую линию далеко назад во времени. (Y-хромосомная ДНК наследуется по отцовской линии, используется аналогичным образом для определения патрилинейной истории.) Обычно это осуществляется на митохондриальной ДНК человека путем секвенирования гипервариабельной области управления (HVR1 или HVR2), а иногда и полной молекулы митохондриальной ДНК как генеалогический тест ДНК. Например, HVR1 состоит примерно из 440 пар оснований. Затем эти 440 пар сравниваются с контрольными областями других лиц (либо конкретных людей или субъектов в базе данных) для определения материнской линии. Чаще всего сравнение проводится с пересмотренной Кембриджской справочной последовательностью. Vilà et al. опубликовали исследования, посвященные матрилинейному сходству домашних собак и волков. Концепция Митохондриальной Евы основана на одном и том же типе анализа, пытается обнаружить происхождение человечества, отслеживает происхождение назад во времени.

мтДНК является высококонсервативной, а ее относительно медленные скорости мутаций (по сравнению с другими областями ДНК, такими как микросателлиты) делают ее полезной для изучения эволюционных отношений - филогении организмов. Биологи могут определить, а затем сравнить мтДНК последовательности у разных видов и использовать сравнения для построения эволюционного дерева для изученных видов. Однако, из-за медленных скоростей мутаций, которые он испытывает, часто трудно различать близкородственные виды в любой степени, поэтому необходимо использовать другие методы анализа.

Мутации митохондриальной ДНК

Можно ожидать, что лица, подвергающиеся однонаправленному наследованию и почти без рекомбинации, подвергаются трещотке Мюллера, накоплению вредных мутаций до тех пор, пока не будет потеряна функциональность. Популяции животных митохондрий избегают этого накопления из-за процесса развития, известного как узкое место мтДНК. Узкое место использует стохастические процессы в клетке для увеличения изменчивости клетки-к-клетке в мутантной нагрузке, когда организм развивается, таким образом, что одна яйцеклетка с некоторой долей мутантной мтДНК создает эмбрион, в котором разные клетки имеют различные мутантные нагрузки. Затем может быть выбран клеточный уровень, чтобы удалить эти клетки с большей мутантной мтДНК, что приведет к стабилизации или уменьшению мутантной нагрузки между поколениями. Механизм, лежащий в основе узкого места, обсуждается с недавней математической и экспериментальной метастадией и служит доказательством комбинации случайного разбиения мтДНК на клеточные деления и случайного оборота молекул мтДНК внутри клетки.

Наследование по отцовской линии

Двукратное однонаправленное наследование мтДНК наблюдается у двустворчатых моллюсков. У этих видов самки имеют только один тип мтДНК (F), тогда как самцы имеют мтДНК типа F в своих соматических клетках, но M тип мтДНК (которая может достигать 30% расходящихся) в клетках зародышевой линии. У материнских унаследованных митохондрий дополнительно сообщалось о некоторых насекомых, таких как плодовые мухи, пчелы и периодические цикады.

Мужское митохондриальное наследования было недавно обнаружено у циплят Плимут-Рок. Доказательства подтверждают редкие случаи мужского митохондриального наследования у некоторых млекопитающих. В частности, документально подтвержденные случаи существуют для мышей, где впоследствии были отвергнуты мужские наследственные митохондрии. Кроме того, он был обнаружен у овец, а также у клонированного крупного рогатого скота. Однажды был обнаружен в организме мужчины.

Несмотря на то, что многие из этих случаев связаны с клонированнием эмбрионов или последующим отторжением отцовской митохондрии, другие документируют наследование и стойкость in vivo в лабораторных условиях.

Митохондриальное донорство

Метод IVF, известный как митохондриальное донорство или митохондриальная заместительная терапия (МЗТ), приводит к потомству, содержащащему мтДНК от доноров женского пола и ядерной ДНК от матери и отца. В процедуре переноса шпинделя, ядро ​​яйца вводится в цитоплазму яйцеклетки от донора-самки, у которой было ​​удалено ядро, но которое по-прежнему содержит мтДНК женского донора. Композиционное яйцо затем оплодотворяется спермой мужчины. Эта процедура используется тогда, когда женщина с генетически неполноценными митохондриями, хочет производить потомство со здоровыми митохондриями. Первым известным ребенком, который родился в результате митохондриального пожертвования, был мальчик, родившийся у иорданской пары, в Мексике 6 апреля 2016 года.

Структура митохондриальной ДНК

В большинстве многоклеточных организмов, мтДНК - или митогеном - организована в виде круглой, циркулярно замкнутой, двухцепочной ДНК. Но во многих одноклеточных (например, тетрахимены или зеленой водоросли Chlamydomonas reinhardtii) и в редких случаях у многоклеточных организмов (например, у некоторых видов книдарий), мтДНК находится как линейно организованная ДНК. Большинство этих линейных мтДНК обладают теломеразо-независимыми теломерами (то есть концами линейной ДНК) с различными режимами репликации, которые сделали их интересными объектами исследования, так как многие из этих одноклеточных организмов с линейной мтДНК являются известными патогенами.

Для митохондриальной ДНК человека (и, вероятно, для метазоанов), 100-10000 отдельных копий мтДНК обычно присутствуют в соматической клетке (яйцеклетки и сперматозоиды являются исключениями). У млекопитающих каждая из двухцепочной молекулы круговой мтДНК состоит из 15000-17000 пар оснований. Две цепи мтДНК различаются по их нуклеотидному содержанию, богатая гуанидом прядь называется тяжелой цепью (или Н-цепью), а богатую цинозином нить называют легкой цепью (или L-нитью). Тяжелая цепь кодирует 28 генов, а легкая - 9 генов, в общей сложности 37 генов. Из 37 генов 13 предназначены для белков (полипептидов), 22 - для передачи РНК (тРНК) и два - для малых и больших субъединиц рибосомальной РНК (рРНК). Митогеном человека содержит перекрывающиеся гены (ATP8 и ATP6, а также ND4L и ND4: см. Карту генома человека митохондрий), которая редко встречается в геномах животных. 37-генная картина также встречается среди большинства метазоанов, хотя, в некоторых случаях, один или несколько из этих генов отсутствуют, а диапазон размеров мтДНК больше. Еще большее изменение содержания и размера генов мтДНК существует среди грибов и растений, хотя, как представляется, существует основное подмножество генов, которое присутствует во всех эукариотах (за исключением немногих, у которых вообще нет митохондрий). Некоторые виды растений имеют огромные мтДНК (столько, сколько 2500000 пар оснований на молекулу мтДНК), но, как ни удивительно, даже эти огромные мтДНК содержат одинаковое число и виды генов, как родственные растения с гораздо меньшими мтДНК.

Геном митохондрии огурца (Cucumis Sativus) состоит из трех кольцевых хромосом (длина 1556, 84 и 45 т.п.н.), которые полностью или в значительной степени автономны в отношении их репликации.

В митохондриальных геномах обнаружено шесть основных типов генома. Эти типы геномов были классифицированы «Колесниковым и Герасимовым (2012)» и различаются различными способами, такими как круговой, по сравнению с линейным геномом, размером генома, наличием интронов или подобных плазмидных структур, а также является ли генетический материал особой молекулой, коллекцией гомогенных или гетерогенных молекул.

Расшифровка генома животных

В клетках животных существует только один тип митохондриального генома. Этот геном содержит одну круговую молекулу между 11-28кбп генетического материала (тип 1).

Расшифровка генома растений

Существует три различных типа генома, содержащихся в растениях и грибах. Первый тип - это круговой геном, который имеет интроны (тип 2) длиной от 19 до 1000 кбп. Второй тип генома представляет собой круговой геном (около 20-1000 кбп), который также имеет плазмидную структуру (1kb) (тип 3). Конечный тип генома, который можно найти в растении и грибах представляет собой линейный геном, состоящий из гомогенных молекул ДНК (тип 5).

Расшифровка генома протистов

Протисты содержат самые разнообразные митохондриальные геномы, которые включают пять разных типов. Тип 2, тип 3 и тип 5, упомянутые в геноме растений и грибов, также существуют в некоторых простейших, а также в двух уникальных типах генома. Первым из них является гетерогенная коллекция круговых молекул ДНК (тип 4), а конечный тип генома, обнаруженный у протистов, представляет собой гетерогенную коллекцию линейных молекул (тип 6). Типы геномов 4 и 6 варьируются от 1 до 200 кб.,

Передача эндосимбиотических генов, процесс генов, кодируемых в митохондриальном геноме, переносится в основном геном клетки, вероятно, это объясняет почему более сложные организмы, например, люди, имеют меньшие митохондриальные геномы, чем более простые организмы, такие как простейшие.

Репликация митохондриальной ДНК

Митохондриальная ДНК реплицируется гамма-комплексом ДНК-полимеразы, который состоит из каталитической ДНК-полимеразы размером 140 кДа, кодируемой геном POLG и двумя вспомогательными субъединицами 55 кДа, закодированными геном POLG2. Репликационное устройство образовано ДНК-полимеразой, TWINKLE и митохондриальными SSB-белками. TWINKLE - это геликаза, которая разматывает короткие отрезки dsDNA в направлении от 5 "до 3".

Во время эмбриогенеза репликация мтДНК строго отрегулирована от оплодотворенного ооцита через предимплантационный эмбрион. Результативное сокращение количества клеток в каждой клетке мтДНК играет роль в узком месте митохондрий, использующем изменчивость клеток к клетке для улучшения наследования повреждающих мутаций. На стадии бластоцитов начало репликации мтДНК специфично для клеток трофтокодера. Напротив, клетки внутренней клеточной массы ограничивают репликацию мтДНК до тех пор, пока они не получат сигналы для дифференциации к конкретным типам клеток.

Транскрипция митохондриальной ДНК

В митохондриях животных каждая нить ДНК непрерывно транскрибируется и производит полицистронную молекулу РНК. Между большинством (но не во всех) белок-кодирующих областях присутствуют тРНК (см. Карту генома митохондрий человека). Во время транскрипции тРНК приобретает характерную L-форму, которая распознается и расщепляется конкретными ферментами. При обработке митохондриальной РНК отдельные фрагменты мРНК, рРНК и тРНК высвобождаются из первичного транскрипта. Таким образом, сложенные тРНК действуют как второстепенные пунктуации.

Митохондриальные заболевания

Понятие о том, что мтДНК особенно восприимчива к реактивным кислородным видам, генерируемым дыхательной цепью из-за его близости, остается спорным. мтДНК не накапливает больше окислительной базы, чем ядерная ДНК. Сообщалось, что, по крайней мере, некоторые виды повреждений окислительной ДНК восстанавливаются более эффективно в митохондриях, чем в ядре. мтДНК упаковывается с белками, которые, по-видимому, являются такими же защитными, как белки ядерного хроматина. Более того, митохондрии развили уникальный механизм, который поддерживает целостность мтДНК путем деградации чрезмерно поврежденных геномов с последующей репликацией интактной/восстановленной мтДНК. Этот механизм отсутствует в ядре и активируется несколькими копиями мтДНК, присутствующими в митохондриях. Результатом мутации в мтДНК может быть изменение инструкций кодирования для некоторых белков, что может влиять на метаболизм и/или пригодность организма.

Мутации митохондриальной ДНК могут привести к ряду заболеваний, включая непереносимость физической нагрузки и синдром Кирнс-Сайре (KSS), который заставляет человека терять полную функцию движений сердца, глаз и мышц. Некоторые данные свидетельствуют о том, что они могут вносить значительный вклад в процесс старения и связаны с возрастом патологии. В частности, в контексте заболевания, доля мутантных молекул мтДНК в клетке называется гетероплазмой. Распределения гетероплазмы внутри клетки и между клетками диктуют начало и тяжесть заболевания и находятся под влиянием сложных стохастических процессов внутри клетки и во время развития.

Мутации в митохондриальных тРНК могут быть ответственны за тяжелые заболевания, например, такие, как синдромы MELAS и MERRF.

Мутации в ядерных генах, кодирующие белки, которые используют митохондрии также могут способствовать митохондриальным заболеваниям. Эти болезни не соответствуют моделям наследования митохондрий, а вместо этого следуют менделевским схемам наследования.

В последнее время мутации в мтДНК были использованы для помощи диагностирования рака простаты у пациентов с отрицательной биопсией.

Механизм старения

Хотя идея является спорной, некоторые данные свидетельствуют о связи между старением и митохондриальной дисфункцией генома. В сущности, мутации в мтДНК нарушают тщательный баланс производства реактивного кислорода (ROS) и ферментативного ROS-продуцирования (ферментами, такими как супероксиддисмутаза, каталаза, глутатионпероксидаза и другие). Тем не менее, некоторые мутации, которые увеличивают производство ROS (например, за счет снижения антиоксидантной защиты) у червей увеличивают, а не уменьшают их долговечность. Кроме того, обнаженные мольные крысы, грызуны, размером с мышей, живут примерно в восемь раз дольше, чем мыши, несмотря на снижение, по сравнению с мышами, антиоксидантной защиты и повышенного окислительного повреждения биомолекул.

Однажды, как полагали, был положительный цикл обратной связи в работе («Vicious Cycle»); поскольку митохондриальная ДНК накапливает генетический ущерб, вызванный свободными радикалами, митохондрии теряют функцию и освобождают свободные радикалы в цитозоле. Снижение функции митохондрий снижает общую метаболическую эффективность. Однако, эта концепция была окончательно опровергнута, когда было продемонстрировано, что мыши, генетически измененные для накопления мутаций мтДНК с увеличенной скоростью, преждевременно стареют, но их ткани не вырабатывают больше ROS, как прогнозировалось гипотезой «Порочный цикл». Поддерживая связь между долговечностью и митохондриальной ДНК в некоторых исследованиях обнаружены корреляции между биохимическими свойствами митохондриальной ДНК и долговечностью видов. Проводятся обширные исследования для дальнейшего изучения этой связи и методов борьбы со старением. В настоящее время генная терапия и нутрицевтические добавки являются популярными областями текущих исследований. Bjelakovic et al. проанализировал результаты 78 исследований в период между 1977 и 2012 годами, в которых участвовало, в общей сложности, 296707 участников, пришел к выводу, что антиоксидантные добавки не уменьшают смертность от каких-либо причин и не продлевают продолжительность жизни, в то время как некоторые из них, такие как бета-каротин, витамин Е и более высокие дозы витамина А, могут фактически увеличить смертность.

Контрольные точки удаления часто встречаются внутри или рядом с регионами, показывающими неканонические (не-B) конформации, а именно шпильки, крестообразные и подобные клеверу элементы. Кроме того, есть данные, подтверждающие вовлечение спирально искажающих криволинейных областей и длинных G-тетрад в выявлении событий нестабильности. Кроме того, более высокие точки плотности последовательно наблюдались в областях с перекосом GC и в непосредственной близости от вырожденного фрагмента последовательности YMMYMNNMMHM.

Чем митохондриальная ДНК отличается от ядерной?

В отличие от ядерной ДНК, которая унаследована от обоих родителей и в которой гены перегруппированы в процессе рекомбинации, обычно нет изменений в мтДНК от родителя к потомству. Хотя мтДНК также рекомбинирует, она делает это с копиями себя в пределах той же митохондрии. Из-за этого частота мутаций животных мтДНК выше, чем у ядерной ДНК. мтДНК является мощным инструментом для отслеживания родословной через женщин (matrilineage) и использовалась в этой роли для отслеживания родословной многих видов сотни поколений назад.

Стремительная частота мутаций (у животных) делает мтДНК полезной для оценки генетических взаимоотношений отдельных индивидуумов или групп в пределах вида, а также для идентификации и количественного определения филогении (эволюционных отношений) среди разных видов. Для этого биологи определяют, а затем сравнивают последовательность мтДНК с разными индивидуумами или видами. Данные сравнений используются для построения сети взаимоотношений между последовательностями, которые обеспечивают оценку отношений между отдельными лицами или видами, из которых были взяты мтДНК. мтДНК может быть использована для оценки взаимосвязи между близкими и удаленными видами. Из-за высокой частоты мутаций мтДНК у животных, 3-й позиции кодонов меняться относительно быстро, и, таким образом, предоставляет информацию о генетических расстояний между близкородственными особями или видами. С другой стороны, скорость замещения mt-белков очень низкая, поэтому изменения аминокислот накапливаются медленно (с соответствующими медленными изменениями в положениях 1-го и 2-го кодонов) и, таким образом, они предоставляют информацию о генетических расстояниях отдаленных родственников. Статистические модели, которые учитывают частоту замещения среди позиций кодонов отдельно, могут поэтому использоваться для одновременной оценки филогении, которая содержит как близкие, так и отдаленные виды.

История открытия мтДНК

Митохондриальная ДНК была обнаружена в 1960-х годах Маргитом М. К. Насом и Сильваном Насом с помощью электронной микроскопии в качестве чувствительных к ДНКазе нитей внутри митохондрий, а также Эллен Хасбруннер, Ханс Таппи и Готфрид Шац из биохимических анализов на высокоочищенных митохондриальных фракциях.

Митохондриальная ДНК впервые была признана в 1996 году во время штата Теннесси против Пола Уэра. В 1998 году в судебном деле Содружества Пенсильвании против Патриции Линн Роррер, митохондриальная ДНК впервые была принята в качестве доказательства в штате Пенсильвания. Случай был показан в эпизоде ​​55 5-го сезона настоящей серии драматических криминалистических судебных дел (сезон 5).

Митохондриальная ДНК впервые была признана в Калифорнии в ходе успешного преследования Дэвида Вестерфилда за похищение и убийство в 2002 году 7-летней Даниэль ван Дам в Сан-Диего: она использовалась как для идентификации людей, так и собак. Это было первое испытание в США, которое разрешило собачью ДНК.

Базы данных по мтДНК

Было создано несколько специализированных баз данных для сбора митохондриальных последовательностей генома и другой информации. Хотя большинство из них сосредоточены на данных о последовательности, некоторые из них включают в себя филогенетическую или функциональную информацию.

  • MitoSatPlant: база данных микросателлитов митохондриальных виридиплантов.
  • MitoBreak: база данных контрольных точек митохондриальной ДНК.
  • MitoFish и MitoAnnotator: база данных о митохондриальном геноме рыб. Смотрите также Cawthorn и др.
  • MitoZoa 2.0: база данных для сравнительного и эволюционного анализа митохондриальных геномов (больше недоступна)
  • InterMitoBase: аннотированная база данных и платформа анализа белково-белковых взаимодействий для митохондрий человека (последний обновлен в 2010 году, но все еще является не доступным)
  • Mitome:база данных для сравнительной митохондриальной геномики у многоклеточных животных (больше недоступна)
  • MitoRes: ресурс ядерно-кодированных митохондриальных генов и их продуктов в метазоах (больше не обновлялся)

Существует несколько специализированных баз данных, которые сообщают о полиморфизмах и мутациях в митохондриальной ДНК человека вместе с оценкой их патогенности.

  • MITOMAP: компендиум полиморфизмов и мутаций в митохондриальной ДНК человека.
  • MitImpact: Сбор предсказанных прогнозов патогенности для всех изменений нуклеотидов, которые вызывают несинонимические замены в генах, кодирующих митохондриальные белки человека.

Вступление

Со времени обнаружения в митохондриях молекул ДНК прошло четверть ве-ка, прежде чем ими заинтересовались не только молекулярные биологи и цито-логи, но и генетики, эволюционисты, а также палеонтологи и криминалисты. Такой широкий интерес спровоцировала работа А. Уилсона из Калифорнийско-го университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человече-ских рас, заселяющих пять континентов. По типу, местоположению и количес-тву индивидуальных мутаций установили, что все митохондриальные ДНК воз-никли из одной предковой последовательности нуклеотидов путем диверген-ции . В околонаучной прессе вывод этот интерпретировали крайне упрощенно - все человечество произошло от одной женщины, названной митохондриаль-ной Евой (т. к. и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из ос-танков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад.

Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Какова роль, как работает и как возник митохондриальный геном у разных таксонов в целом и у человека в частности? Об этом и пойдет речь в моем “маленьком и самом скромном” реферате.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, рас-положенных на мембранах эндоплазматической сети. Однако на рибосомах ми-тохондрий образуется не более 5% от всех белков, входящих в их состав. Бóль-шая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндо-плазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии - это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферме-нты дыхательной цепи митохондрий состоят из разных полипептидов, часть ко-торых кодируется ядерным, а часть - митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования - цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в мито-хондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из вну-триклеточных бактерий-эндосимбионтов высказал Р. Альтман еще в 1890 г. За век бурного развития биохимии , цитологии , генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на бо-льшом фактическом материале. Суть ее такова: с появлением фотосинтезирую-щих бактерий в атмосфере Земли накапливался кислород - побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных ге-теротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бóльшим КПД, чем анаэробные бактерии, расщеплять органические ве-щества, образующиеся в результате фотосинтеза. Часть свободно живущих аэ-робов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к ды-ханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие уси-лия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

Совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

По нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

Митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику ;

Белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

Липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

Кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

До сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных гено-мов простейших, грибов, растений и высших животных. Но во всех случаях ос-новная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой. Новый геном может создавать метаболические пути, приводящие к образова-нию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть - в эндоплазматической сети. Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрип-ции и трансляции мтДНК, контролируя тем самым рост и размножение мито-хондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много мито-хондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Роль клеточного ядра в биогенезе митохондрий

У мутантных дрожжей определенного типа имеется обширная делеция в митохондриальной ДНК, что ведет к полному прекращению белкового синтеза в митохондриях; в результате эти органеллы не способны выполнять, свою функцию. Так как при росте на среде с низким содержанием глюкозы такие мутанты образуют мелкие колонии, их называют цитоплазматическими му тантами petite .

Хотя у мутантов petite нет митохондриального синтеза белков и поэтому нормальных митохондрий не образуется, тем не менее такие мутанты содержат промитохондрии, которые в известной мере сходны с обычными митохондриями, имеют нормальную наружную мембрану и внутреннюю мeмбрану со слабо развитыми кристами. В промитохондриях имеются многие ферменты, кодируемые ядерными генами и синтезируемые на рибосомах цитоплазмы, в том числе ДНК - и РНК-полимеразы, все ферменты цикла лимонной кислоты и многие белки, входящие в состав внутренней мембраны. Это наглядно демонстрирует преобладающую роль ядерного генома в биогенезе митохондрий.

Интересно отметить, что, хотя утраченные фрагменты ДНК составляют от 20 до более чем 99,9% митохондриального генома, общее количество митохондриальной ДНК у мутантов petite всегда остается на том же уровне, что и у дикого типа. Это обусловлено еще мало изученным процессом aмплификации ДНК, в результате которого образуется молекула ДНК, состоящая из тандемных повторов одного и того же участка и равная по величине нормальной молекуле. Например, митохондриальная ДНК мутанта petite, сохранившая 50% нуклеотидной последовательности ДНК дикого типа, будет состоять из двух повторов, тогда как молекула, сохранившая только 0,1% генома дикого типа, будет построена из 1000 копий оставшегося фрагмента. Таким образом, мутанты petite могут быть использованы для получения в большом количестве определенных участков митохондриальной ДНК, которые, можно сказать, клонируются самой природой.

Хотя биогенез органелл контролируется главным образом ядерными генами, сами органеллы тоже, судя по некоторым данным, оказывают какое-то регулирующее влияние по принципу обратной связи; во всяком случае так обстоит дело с митохондриями. Если блокировать синтез белка в митохондриях интактных клеток, то в цитоплазме начинают в избытке образовываться ферменты участвующие в митохондриальном синтезе ДНК, РНК и белков, как будто клетка пытается преодолеть воздействие блокирующего агента. Но, хотя существование какого-то сигнала со стороны митохондрий и не вызывает сомнений, природа его до сих пор не известна.

По ряду причин механизмы биогенеза митохондрий изучают сейчас в большинстве случаев на культурах Saccharomyces carlsbergensis (пивные дрожжи и S . cerevisiae (пекарские дрожжи). Во-первых, при росте на глюкозе эти дрожжи обнаруживают уникальную способность существовать только за счет гликолиза, т. е. обходиться без функции митохондрий. Это дает возможность изучать мутации в митохондриальной и ядерной ДНК, препятствующие развитию этих органелл. Такие мутации летальны почти у всех других организмов. Во-вторых, дрожжи - простые одноклеточные эукариоты - легко культивировать и подвергать биохимическому исследованию. И наконец, дрожжи могут размножаться как в гаплоидной, так и в диплоидной фазе, обычно бесполым способом-почкованием (асимметричный митоз). Но у дрожжей встречается и половой процесс: время от времени две гаплоидные клетки сливаются, образуя диплоидную зиготу, которая затем либо делится путем митоза, либо претерпевает мейоз и снова дает гаплоидные клетки. Контролируя в ходе эксперимента чередование бесполого и полового раз-множения, можно многое узнать о генах, ответственных за функцию митохондрий. С помощью этих методов можно, в частности, выяснить, локализованы ли такие гены в ядерной ДНК или в митохондриальной, так как мутации митохондриальных генов не наследуются по законам Менделя, которым подчиняется наследование ядерных генов.

Транспортные системы митохондрий

Большая часть белков, содержащихся в митохондриях и хлоропластах импор-тируется в эти органеллы из цитозоля. В связи с этим возникают два вопроса: как клетка направляет белки к надлежащей органелле и каким образом эти белки проникают в нее?

Частичный ответ был получен при изучении транспорта в строму хлоропласта малой субъединицы (S) фермента рибулозо-1,5-бисфосфат-карбокси лазы. Если мРНК, выделенную из цитоплазмы одноклеточной водоросли Chlamydomonas или из листьев гороха, ввести в качестве матрицы в белоксинтезирующую систему in vitro, то один из многих образующихся белков будет связываться специфическим анти-S-антителом. S-белок, синтезируемый in vitro, называют пpo-S, так как он больше обычного S-белка примерно на 50 аминокислотных остатков. При инкубации белка пpo-S с интактными хлоропластами он проникает в органеллы и превращается там под действием пептидазы в S-белок. Затем S-белок связывается с большой субъединицей рибулозо-1,5-бисфосфат-карбоксилазы, синтезируемой на рибосомах хлоропласта, и образует с нею в строме хлоропласта активный фермент.

Механизм переноса S-белка неизвестен. Полагают, что пpo-S связывается с белком-рецептором, находящимся на наружной мембране хлоропласта или в месте контакта наружной и внутренней мембран, а затем переносится в строму через трансмембранные каналы в результате процесса, требующего затраты энергии.

Сходным образом осуществляется транспорт белков внутрь митохондрий. Если очищенные митохондрии дрожжей инкубировать с клеточным экстрактом, содержащим только что синтезированные радиоактивные дрожжевые белки, то можно наблюдать, что митохондриальные белки, кодируемые ядерным геномом, отделяются от немитохондриальных белков цитоплазмы и избирательно включаются в митохондрии-так же, как это происходит в интактной клетке. При этом белки наружной и внутренней мембран, матрикса и межмембранного пространства находят свой путь к соответствующему компартменту митохондрии.

Многие из вновь синтезированных белков, предназначенных для внутренней мембраны, матрикса и межмембранного пространства, имеют на своем N-конце лидерный пептид, который во время транспортировки отщепляется специфической протеазой, находящейся в матриксе. Для переноса белков в эти три митохондриальных компартмента необходима энергия электрохимического протонного градиента, создаваемого на внутренней мембране. Механизм переноса белков для наружной мембраны иной: в этом случае не требуется ни затрат энергии, ни протеолитического расщепления более длинного белка-предшественника. Эти и другие наблюдения позволяют думать, что все четыре группы митохондриальных белков транспортируются в органеллу с помощью следующего механизма: предполагается, что все белки, кроме тех, которые предназначены для наружной мембраны, включаются во внутреннюю мембрану в результате процесса, требующего затраты энергии и происходящего в местах контакта наружной и внутренней мембран. По-видимому, после этого первоначального включения белка в мембрану он подвергается протеолитическому расщеплению, которое приводит к изменению его конформации; в зависимости от того, как изменится конформация, белок либо закрепляется в мембране, либо «выталкивается» в матрикс или в межмембранное пространство.

Перенос белков через мембраны митохондрий и хлоропластов в принципе аналогичен переносу их через мембраны эндоплазматического ретикулума. Однако здесь есть несколько важных отличий. Во-первых, при транспорте в матрикс или строму белок проходит как через наружную, так и через внутреннюю мембрану органеллы, тогда как при переносе в просвет эндоплазматического ретикулума молекулы проходят только через одну мембрану. Кроме того, перенос белков в ретикулум осуществляется с помощью механизма направленного выведения (vectorial discharge)-он начинается тогда, когда белок еще не полностью сошел с рибосомы (котрансляционный импорт), а перенос в митохондрии и хлоропласты происходит уже после того, как синтез белковой молекулы будет полностью завершен (посттрансляционный импорт).

Несмотря на эти различия, и в том и в другом случае клетка синтезирует белки-предшественники, содержащие сигнальную последовательность, которая определяет, к какой мембране направится данный белок. По-видимому, во многих случаях эта последовательность отщепляется от молекулы-предшественника после завершения транспортного процесса. Однако некоторые белки сразу синтезируются в окончательном виде. Полагают, что в таких случаях сигнальная последовательность заключена в полипептидной цепи готового белка. Сигнальные последовательности еще плохо изучены, но, вероятно, должно быть несколько типов таких последовательностей, каждый из которых определяет перенос белковой молекулы в определенную область клетки. Например, в растительной клетке некоторые из белков, синтез которых начинается в цитозоле, транспортируются затем в митохондрии, другие - в хлоропласты, третьи - в пероксисомы, четвертые - в эндоплазматический ретикулум. Сложные процессы, приводящие к правильному внутриклеточному распределению белков, только сейчас становятся понятными.

Помимо нуклеиновых кислот и белков для построения новых митохондрий нужны липиды. В отличие от хлоропластов митохондрии получают бóльшую часть своих липидов извне. В животных клетках фосфолипиды, синтезированные в эндоплазматическом ретикулуме, транспортируются к наружной мембране митохондрий с помощью особых белков, а затем включаются во внутреннюю мембрану; как полагают, это происходит в месте контакта двух мембран. Основная реакция биосинтеза липидов, катализируемая самими митохондриями, - это превращение фосфатидной кислоты в фосфолипид кардиолипин, который содержится главным образом во внутренней митохондриальной мембране и составляет около 20% всех ее липидов.

Размеры и форма митохондриальных геномов

К настоящему времени прочитано более 100 разных геномов митохондрий. На-бор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных ви-дов животных, растений, грибов и простейших. Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomo-nas americana - 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов. У большинства высших животных геном митохон-дрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК). У растений и простейших, в отличие от животных и большинства гри-бов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеоти-дного синтеза, такие как ДНК-полимераза (осуществляющая репликацию мито-хондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохон-дрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерар-хии эвкариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору ге-нов, порядку их расположения и экспрессии, но по размеру и форме ДНК. По-давляющее большинство описанных сегодня митохондриальных геномов пред-ставляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линей-ные, а у некоторых простейших, например инфузорий, в митохондриях обнару-жены только линейные ДНК.

Как правило, в каждой митохондрии содержится несколько копий ее ге-нома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них - по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, со-держащих по два генома, а в клетках дрожжей S. cerevisiae - до 22 митохон-дрий, имеющих по четыре генома.

https://pandia.ru/text/78/545/images/image002_21.jpg" align="left" width="386 height=225" height="225">Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК. ori - район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар ну-клеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7-8-кратные различия в ра-змерах мтДНК высших растений обнаруживаются даже в пределах одного се-мейства. Длина мтДНК позвоночных животных отличается незначительно: у человека - 16569 пар нуклеотидов, у свиньи - 16350, у дельфина - 16330, у шпорцевой лягушки Xenopus laevis - 17533, у карпа - 16400. Эти геномы схо-дны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что по-следний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% не-кодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и сла-бая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических за-мен Ц®Т (дезаминирование цитозина) и Г®Т (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством - они не метилируются, в отли-чие от ядерных и прокариотических ДНК. Известно, что метилирование (време-нная химическая модификация нуклеотидной последовательности без наруше-ния кодирующей функции ДНК) - один из механизмов программируемой инактивации генов.

Размеры и строение молекул ДНК в органеллах

Структура

Масса, млн.

дальтон

Примечания

охон

дриа

Животные

Кольцевая

У каждого отдельного вида все молекулы одного размера

Высшие ра

стения

Кольцевая

Варьирует

У всех изученных видов имеются разные по величине кольцевые ДНК, в которых общее содержание генетической информации соответ-ствует массе от 300 до 1000 млн. дальтон в зависимости от вида

Грибы:

Простейшие

Кольцевая

Кольцевая

Кольцевая

Линейная

Хлор

опла

стов

Водоросли

Кольцевая

Кольцевая

Высшие

растения

Кольцевая

У каждого отдельного вида найдены молекулы только одного

Относительное количество ДНК органелл в некоторых клетках и тканях

Организм

Ткань или

тип клеток

Число мол-л ДНК/органел-

Число орга-

нелл в

клетке

Доля ДНК орга-нелл во всей

ДНК клетки, %

охон

дриа

Клетки линии L

Яйцеклетка

Хлор

опла

стов

Вегетативные диплоидные клетки

Кукуруза

Функционирование митохондриального генома

Что же особенного в механизмах репликации и транскрипции ДНК митохондрий млекопитающих?

Комплементарий" href="/text/category/komplementarij/" rel="bookmark">комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количе-ство “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репли-кации молекулы мтДНК образуется так называемая D-петля (от англ. Displace-ment loop - петля смещения). Эта структура, видимая в электронный микро-скоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и компле-ментарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонук-леотидную затравку, которая соответствует точке начала синтеза Н-цепи (oriH). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступ-на для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовате-льно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким обра-зом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3. Схема репликации мтДНК млекопитающих. Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь, потом начинается синтез дочерней L-цепи.

Кон-це гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а так-же фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых при-соединяются полиадениловые последовательности. 5"-концы этих мРНК не кэ-пируются, что необычно для эвкариот. Сплайсинга (сращивания) не происхо-дит, поскольку ни один из митохондриальных генов млекопитающих не содер-жит интронов.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.

Хотите узнать какие еще сюрпризы способен преподнести митохон-дриальный геном? Отлично! Читаем дальше!..

Лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохром-оксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокатали-тически (без участия каких-либо белков) вырезается копия большей части пер-вого интрона. Оставшаяся РНК служит матрицей для образования фермента ма-туразы, участвующей в сплайсинге. Часть ее аминокислотной последовательно-сти закодирована в оставшихся копиях интронов. Матураза вырезает их, разру-шая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пере-смотреть представление об интронах, как о “ничего не кодирующих последова-тельностях”.

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей. На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза, необходимая для второго этапа сплайсинга.

При изучении экспрессии митохон-дриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что после-довательность нуклеотидов в мРНК в точности соответствует таковой в коди-рующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т. е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, пос-ледовательность аминокислот в которой не имеет ничего общего с последова-Вирус" href="/text/category/virus/" rel="bookmark">вирусов , грибов, расте-ний и животных. Английский исследователь Беррел сопоставил структуру од-ного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что гене-тический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т. е. подчиняется следующему пра-вилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеоти-ды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти трип-лета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются прин-ципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Мож-но сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Различия между “универсальным” генетическим кодом и двумя митохондриальными кодами

Кодон

Митохондриальный

код млекопитающих

Митохондриальный

код дрожжей

Универсальный

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 ге-на тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в уни-версальном - три)? Дело в том, что при синтезе белка в митохондриях упроще-ны кодон-антикодонные взаимодействия - для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеоти-дом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме на-против кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включе-ние лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за при-соединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриаль-ного синтеза полипептидов зашифрованы в ядре. При этом синтез белков в ми-тохондриях не подавляется циклогексимидом, блокирующим работу эвкариоти-ческих рибосом, но чувствителен к антибиотикам эритромицину и хлорамфени-колу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток.

Значение наличия собственной генетической системы для митохондрий

Почему митохондриям необходима собственная генетическая система, тогда как другие органеллы, например пероксисомы и лизосомы ее не имеют? Этот вопрос совсем не тривиален, так как поддержание отдельной генетической сис-темы дорого обходится клетке, если учесть необходимое количество дополни-тельных генов в ядерном геноме. Здесь должны быть закодированы рибосом-ные белки, аминоацил-тРНК-синтетазы, ДНК - и РНК-полимеразы, ферменты процессинга и модификации РНК и т. д. Большинство изученных белков из митохондрий отличаются по аминокислотной последовательности от своих аналогов из других частей клетки, и есть основание полагать, что в этих органе-ллах очень мало таких белков, которые могли бы встретиться еще где-нибудь. Это означает, что только для поддержания генетической системы митохондрий в ядерном геноме должно быть несколько десятков дополнительных генов. При-чины такого “расточительства” неясны, и надежда на то, что разгадка будет найдена в нуклеотидной последовательности митохондриальной ДНК, не опра-вдалась. Трудно представить себе, почему образующиеся в митохондриях бел-ки должны непременно синтезироваться именно там, а не в цитозоле.

Обычно существование генетической системы в энергетических органеллах объясняют тем, что некоторые из синтезируемых внутри органеллы белков слишком гидрофобны, чтобы пройти сквозь митохондриальную мембрану из-вне. Однако изучение АТР-синтетазного комплекса показало, что такое объясне-ние неправдоподобно. Хотя отдельные белковые субъединицы АТР-синтетазы весьма консервативны в ходе эволюции, места их синтеза изменяются. В хлоропластах несколько довольно гидрофильных белков, в том числе четыре из пяти субъединиц F1-ATPазной части комплекса, образуются на рибосомах внутри органеллы. Напротив, у гриба Neurospora и в животных клетках весьма гидрофобный компонент (субъединица 9) мембранной части АТРазы синтези-руется на рибосомах цитоплазмы и лишь после этого переходит в органеллу. Различную локализацию генов, кодирующих субъединицы функционально эквивалентных белков у разных организмов, трудно объяснить с помощью какой бы то ни было гипотезы, постулирующей определенные эволюционные преимущества современных генетических систем митохондрий и хлоропластов.

Учитывая все вышесказанное, остается только предположить, что генетическая система митохондрий представляет собой эволюционный тупик. В рамках эндо-симбиотической гипотезы это означает, что процесс переноса генов эндосимбионта в ядерный геном хозяина прекратился раньше, чем был полностью завершен.

Цитоплазматическая наследственность

Последствия цитоплазматической передачи генов для некоторых животных, в том числе и для человека, более серьезны, нежели для дрожжей. Две сливающиеся гаплоидные дрожжевые клетки имеют одинаковую величину и вносят в образующуюся зиготу одинаковое количество митохондриальной ДНК. Таким образом, у дрожжей митохондриальный геном наследуется от обоих родителей, которые вносят равный вклад в генофонд потомства (хотя, спустя несколько генераций отдельные потомки нередко будут содержать митохондрии только одного из родительских типов). В отличие от этого у высших животных яйцеклетка вносит в зиготу больше цитоплазмы чем спермий, а у некоторых животных спермии могут вообще не вносить цитоплазмы. Поэтому можно думать, что у высших животных митохондриальный геном будет передаваться только от одного родителя (а именно по материнской линии); и действительно, это было подтверждено экспериментами. Оказалось, например, что при скрещивании крыс двух лабораторных линий с митохондриальной ДНК, слегка различающейся по пocледовательности нуклеотидов (типы А и В), получается потомство, содержа-

щее митохондриальную ДНК только материнского типа.

Цитоплазматическая наследственность, в отличие от ядерной, не под-чиняется законам Менделя. Это связано с тем, что у высших животных и расте-ний гаметы от разных полов содержат несопоставимые количества митохон-дрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде - лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т. е. наследование всех мито-хондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохон-дриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертиль-ность растений вне зависимости от состояния митохондриального генома.

Хотелось бы остановиться на механизме материнского наследования генов путем приведения конкретного примера. Для того чтобы окончательно и бесповоротно понять механизм неменделевского (цитоплазматического) наследования митохондриальных генов, рассмотрим, что происходит с такими генами, когда две гаплоидные клетки сливаются, образуя диплоидную зиготу. В случае когда одна дрожжевая клетка несет мутацию, определяющую резистентность митохондриального белкового синтеза к хлорамфениколу, а другая - клетка дикого типа - чувствительна к этому антибиотику: мутантные гены легко выявить, выращивая дрожжи на среде с глицеролом, использовать который способны только клетки с интактными митохондриями; поэтому в присутствии хлорамфеникола на такой среде смогут расти только клетки, несущие мутантный ген. Наша диплоидная зигота вначале будет иметь митохондрии как мутантного, так и дикого типа. От зиготы в результате митоза отпочкуется диплоидная дочерняя клетка, которая будет содержать лишь небольшое число митохондрий. После нескольких митотических циклов в конце концов какая-то из новых клеток получит все митохондрии либо мутантного, либо дикого типа. Поэтому все потомство такой клетки будет иметь генетически идентичные митохондрии. Такой случайный процесс, в результате которого образуется диплоидное потомство содержащее митохондрии только одного типа, называют митотическо й се грегацие й . Когда диплоидная клетка с одним лишь типом митохондрий претерпевает мейоз, все четыре дочерние гаплоидные клетки получают одинаковые митохондриальные гены. Этот тип наследования называют неменде лев ским или цитоплазматическим в отличие от менделевского наследования ядерных генов. Передача генов по цитоплазматическому типу означает, что изучаемые гены находятся в митохондриях.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и мито-хондриальными генетическими системами, необходимо для понимания слож-ной иерархической организации эвкариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наслед-ственные болезни и старение человека. Накапливаются данные об участии де-фектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть ми-шенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множес-твенные делеции мтДНК обнаружены у больных с тяжелой мышечной слабос-тью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу. Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено мате-ринским эффектом - цитоплазматической наследственностью. Развитие ген-ной терапии внушает надежду на исправление дефектов в геномах митохон-дрий в обозримом будущем.

Как известно, для того чтобы проверить функцию одного из компонентов многокомпонентной системы, необходимой становится ликвидация даного компонента с последующим анализом произошедших изменений. Так как темой даного реферата является указание роли материнского генома для развития потомка, логично было бы узнать о последствиях нарушений в составе митохондриального генома вызванных различными факторами. Инструментом для изучения вышеуказанной роли оказался мутационный процесс, а интересующими нас последствиями его действия стали т. н. митохондриальные болезни.

Митохондриальные болезни представляют собой пример цитоплазмати-ческой наследственности у человека, а точнее «органелльной наследствен-ности». Это уточнение следует сделать, т.к. теперь доказано существование, по крайней мере, у некоторых организмов, цитоплазматических наследственных детерминант , не связанных с клеточными органеллами, - цитогенов(-Вечтомов, 1996).

Митохондриальные болезни - гетерогенная группа заболеваний, обусловленных генетическими, структурными, биохимическими дефектами митохондрий и нарушением тканевого дыхания. Для постановки диагноза митохондриального заболевания важен комплексный генеалогический, клинический, биохимический, морфологический и генетический анализ. Основным биохимическим признаком митохондриальной патологии является развитие лактат-ацидоза, обычно выявляется гиперлактатацидемия в сочетании с гиперпируватацидемией. Число различных вариантов достигло 120 форм. Отмечается стабильное повышение концентрации молочной и пировиноградной кислот в цереброспинальной жидкости.

Митохондриальные болезни (МБ) представляют собой существенную про-блему для современной медицины. По способам наследственной передачи среди МБ выделяют заболевания, наследуемые моногенно по менделевскому типу, при которых в связи с мутацией ядерных генов либо нарушаются структура и функционирование митохондриальных белков, либо изменяется экспрессия митохондриальной ДНК, а также болезни, вызываемые мутациями митохондри-альных генов, которые в основном передаются потомству по материнской линии.

Данные морфологических исследований, свидетельствующие о грубой патологии митохондрий: анормальная пролиферация митохондрий, полимор-физм митохондрий с нарушением формы и размеров, дезорганизация крист, скопления аномальных митохондрий под сарколеммой, паракристаллические включения в митохондрии, наличие межфибриллярных вакуолей

Формы митохондриальных заболеваний

1 . Митохондриальные болезни, вызванные мутациями митохондриальной ДНК

1.1.Болезни, обусловленные делециями митохондриальной ДНК

1.1.1.Синдром Кернса-Сейра

Заболевание проявляется в возрасте 4-18 лет, прогрессирующая наружная офтальмоплегия, пигментный ретинит, атаксия, интенционный тремор, атриовентрикулярная блокада сердца, повышение уровня белка в цереброспи-нальной жидкости более 1 г\л, "рваные" красные волокна в биоптатах скелет-ных мышц

1.1.2.Синдром Пирсона

Дебют заболевания с рождения или в первые месяцы жизни, иногда возможно развитие энцефаломиопатий, атаксии, деменции, прогрессирующей наружной офтальмоплегии, гипопластическая анемия , нарушение экзокринной функции поджелудочной железы, прогрессирующее течение

2 .Болезни, обусловленные точковыми мутациями митохондриальной ДНК

Материнский тип наследования, острое или подострое снижение остроты зре-ния на один или оба глаза, сочетание с неврологическими и костно-суставными нарушениями, микроангиопатия сетчатки, прогрессирующее течение с возмо-жностью ремиссии или восстановления остроты зрения, дебют заболевания в возрасте 20-30 лет

2.2.Синдром NAPR (невропатия, атаксия, пигментный ретинит)

Материнский тип наследования, сочетание нейропатии, атаксии и пигментного ретинита, задержка психомоторного развития, деменция, наличие "рваных" красных волокон в биоптатах мышечной ткани

2.3.Синдром MERRF (миоклонус-эпилепсия, "рваные" красные волокна)

Материнский тип наследования, дебют заболевания в возрасте 3-65 лет, мио-клоническая эпилепсия, атаксия, деменция в сочетании с нейросенсорной глу-хотой, атрофией зрительных нервов и нарушениями глубокой чувствительно-сти, лактат-ацидоз, при проведении ЭЭГ обследования выявляются генерализо-ванные эпилептические комплексы, "рваные" красные волокна в биоптатах скелетных мышц, прогрессирующее течение

2.4.Синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды)

Материнский тип наследования, дебют заболевания в возрасте до 40 лет, непе-реносимость физических нагрузок, мигренеподобные головные боли с тошно-той и рвотой, инсультоподобные эпизоды, судороги, лактат-ацидоз, "рваные" красные волокна в биоптатах мышц, прогрессирующее течение.

3 .Патология, связанная с дефектами межгеномной коммуникации

3.1.Синдромы множественных делеций митохондриальной ДНК

Блефароптоз, наружная офтальмоплегия, мышечная слабость, нейросенсорная глухота, атрофия зрительных нервов, прогрессирующее течение, "рваные" крас-ные волокна в биоптатах скелетных мышц, снижение активности ферментов дыхательной цепи.

3.2.Синдром делеции митохондриальной ДНК

Аутосомно-рецессивный тип наследования

Клинические формы:

3.2.1.Фатальная инфантильная

а) тяжелая печеночная недостаточность б)гепатопатия в)мышечная гипотония

Дебют в периоде новорожденности

3.2.2.Врожденная миопатия

Выраженная мышечная слабость, генерализованная гипотония, кардиомиопа-тия и судороги, поражение почек, глюкозурия, аминоацидопатия, фосфатурия

3.2.3.Инфантильная миопатия

возникает в первые 2 года жизни, прогрессирующая мышечная слабость, атро-фия проксимальных групп мышц и утрата сухожильных рефлексов, течение быстро прогрессирующее, летальный исход в первые 3 года жизни.

4 .Митохондриальные болезни, обусловленные мутациями ядерной ДНК

4.1.Заболевания, связанные с дефектами дыхательной цепи

4.1.1.Дефицит комлекса 1 (NADH:CoQ-редуктаза)

Начало заболевания до 15 лет, синдром миопатии, задержка психомоторного развития, нарушение сердечно-сосудистой системы, судороги, резистентные к терапии, множественные неврологические нарушения, прогрессирующее тече-ние

4.1.2.Дефицит комплекса 2 (сукцинат-CoQ-редуктаза)

Характеризуется синдромом энцефаломиопатии, прогрессирующие течение, су-дороги, возможно развитие птоза

4.1.3.Дефицит комплекса 3 (CoQ-цитохром С-оксидоредуктаза)

Мультисистемные нарушения, поражение различных органов и систем, с вовле-чением центральной и периферической нервной системы, эндокринной систе-мы, почек, прогрессирующее течение

4.1.4.Дефицит комплекса (цитохром С-оксидаза)

4.1.4.1.Фатальный инфантильный врожденный лактат-ацидоз

Митохондриальная миопатия с почечной недостаточностью или кардиомиопа-тия, дебют в неонатальном возрасте, выраженные дыхательные нарушения, диффузная мышечная гипотония, течение прогрессирующее, летальный исход на первом году жизни.

4.1.4.2.Доброкачественная инфантильная мышечная слабость

Атрофии, при адекватном и своевременном лечении возможна быстрая стаби-лизация процесса и выздоровление к 1-3 годам жизни

5 .Синдром Менкеса (трихополиодистрофия)

Резкая задержка психомоторного развития, отставание в росте, нарушение рос-та и дистрофические изменения волос,

6 . Митохондриальные энцефаломиопатии

6.1.Синдром Лея (подострая невротизирующая энцефаломиелопатия)

Проявляется после 6 месяцев жизни, мышечная гипотония, атаксия, нистагм, пирамидные симптомы, офтальмоплегия, атрофия зрительных нервов, часто от-мечается присоединение кардиомиопатии и легкого метаболического ацидоза

6.2.Синдром Альперса (прогрессирующая склерозирующая полидистрофия)

Дегенерация серого вещества мозга в сочетании с циррозом печени, дефицит комплекса 5 (АТФ-синтетаза), задержка психомоторного развития, атаксия, деменция, мышечная слабость, течение заболевания прогрессирующее, небла-гоприятный прогноз

6.3.Дефицит Коэнзима-Q

Метаболические кризы, мышечная слабость и утомляемость, офтальмоплегия, глухота, снижение зрения, инсультоподобные эпизоды, атаксия, миоклонус-эпилепсия, поражение почек: глюкозурия, аминоацидопатия, фосфатурия, эндо-кринные нарушения, прогрессирующее течение, снижение активности фермен-тов дыхательной цепи

7 .Заболевания, связанные с нарушением метаболизма молочной и пировиноградной кислот

7.1.Дефицит пируваткарбоксилазы Аутосомно-рецессивный тип наследования, дебют заболевания в неоната-льном периоде, симптомокомплекс "вялого ребенка", судороги, резистентные к терапии, высокие концентрации кетоновых тел в крови, гипераммониемия, ги-перлизинемия, снижение активности пируваткарбоксилазы в скелетных мышцах

7.2.Дефицит пируватдегидрогеназы

Проявление в неонатальном периоде, черепно-лицевая дизморфия, судороги, резистентные к терапии, нарушение дыхания и сосания, симптомокомплекс "вя-лого ребенка", дисгинезии мозга, выраженный ацидоз с высоким содержанием лактата и пирувата

7.3.Снижение активности пируватдегидрогеназы

Проявление на первом году жизни, микроцефалия, задержка психомоторного развития, атаксия, мышечная дистония, хореоатетоз, лактат-ацидоз с высоким содержанием пирувата

7.4.Дефицит дигидролипоилтрансацетилазы

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде, микроцефалия, задержка психомоторного развития, мышечная гипотония с последующим повышением мышечного тонуса, атрофия дисков зрительных нервов, лактат-ацидоз, снижение активности дигидролипоилтранс-ацетилазы

7.5.Дефицит дигидролипоилдегидрогеназы

Аутосомно-рецессивный тип наследования, дебют заболевания на первом году жизни, симптомокомплекс "вялого ребенка", дисметаболические кризы со рво-той и диареей, задержка психомоторного развития, атрофия дисков зрительных нервов, лактат-ацидоз, повышение содержания в сыворотке крови аланина, α-кетоглутарата, α-кетокислот с разветвленной цепью, снижение активности ди-гидролипоилдегидрогеназы

8 .Заболевания, обусловленные дефектами бета-окисления жирных кислот

8.1.Недостаточность Ацетил-CoA-дегидрогеназы с длинной углеродной цепью

Аутосомно-рецессивный тип наследования, дебют заболевания в первые месяцы жизни, метаболические кризы со рвотой и диареей, симптомокомплекс "вялого ребенка", гипогликемия, дикарбоксиловая ацидурия, снижение актив-ности ацетил-CoA-дегидрогеназы жирных кислот с длинной углеродной цепью

8.2.Недостаточность Ацетил-CoA-дегидрогеназы со средней углеродной цепью

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде или первые месяцы жизни, метаболические кризы со рвотой и диареей,

мышечная слабость и гипотония, часто развивается синдром внезапной смерти, гипогликемия, дикарбоксиловая ацидурия, снижение активности ацетил-CoA-дегидрогеназы жирных кислот со средней углеродной цепью

8.3. Недостаточность Ацетил-CoA-дегидрогеназы жирных кислот с короткой углеродной цепью

Аутосомно-рецессивный тип наследования, различный возраст дебюта заболевания, снижение толерантности к физическим нагрузкам, метаболичес-кие кризы со рвотой и диареей, мышечная слабость и гипотония, увеличение экскреции с мочой метилсукциновой кислоты, ацетил-CoA-дегидрогеназы жирных кислот с короткой углеродной цепью

8.4.Множественная недостаточность Ацетил-CoA-дегидрогеназ жирных кислот

Неонатальная форма : черепно-лицевая дизморфия, дисгинезии мозга, тяжелая гипогликемия и ацидоз, злокачественное течение, снижение активности всех ацетил-СоА-дегидрогеназ жирных кислот,

Инфантильная форма: симптомокосплекс "вялого ребенка", кардиомиопатия, метаболические кризы, гипогликемия и ацидоз

8.5.Снижение активности всех ацетил-СоА-дегидрогеназ жирных кислот

Форма с поздним дебютом: периодические эпизоды мышечной слабости, мета-болические кризы, гипогликемия и ацидоз менее выражены, интеллект сохра-нен,

9 .Ферментопатии цикла Кребса

9.1.Дефицит фумаразы

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде или периоде новорожденности, микроцефалия, генерализованная мы-шечная слабость и гипотония, эпизоды летаргии, быстро прогрессирующая эн-цефалопатия, неблагоприятный прогноз

9.2.Дефицит сукцинатдегидрогеназы

Редкое заболевание, характеризующееся прогрессирующей энцефаломиопатией

9.3.Дефицит альфа-кетоглутаратдегидрогеназы

Аутосомно-рецессивный тип наследования, неонатальный дебют заболевания, микроцефалия, симптомокомплекс "вялого ребенка", эпизоды летаргии, лактат-ацидоз, быстро прогрессирующее течение, снижение содержания ферментов цикла Кребса в тканях

9.4.Синдромы дефицита карнитина и ферментов его метаболизма

Дефицит карнитин-пальмитоилтрансферразы-1, аутосомно-рецессивный тип наследования, ранний дебют заболевания, эпизоды не кетонемической гипогли-кемической комы, гепатомегалия, гипертриглицеридемия и умеренная гиперам-мониемия, снижение активности карнитин-пальмитоилтрансферразы-1 в фибробластах и клетках печени

9.5.Дефицит карнитин-ацилкарнитин-транслоказы

Ранний дебют заболевания, сердечно-сосудистые и дыхательные нарушения, симптомокомплекс "вялого ребенка", эпизоды летаргии и комы, повышение концентрации эфиров карнитина и длинной углеродной цепью на фоне сниже-ния свободного карнитина в сыворотке крови, снижение активности карнитин-ацилкарнитин-транслоказы

9.6.Дефицит карнитин-пальмитоилтрансферразы-2

Аутосомно-рецессивный тип наследования, мышечная слабость, миалгии, миоглобинурия, снижение активности карнитин-пальмитоилтрансферразы-2 в скелетных мышцах

Аутосомно-рецессивный тип наследования, миопатический симптомокомплекс, эпизоды вялости и летаргии, кардиомиопатия, эпизоды гипогликемии, снижение уровня карнитина в сыворотке крови и увеличение его экскреции с мочой.

Проанализировав такой ‘страшный’ список патологий, связанных с теми или другими изменениями функционирования митохондриального(и не только) генома возникают определенные вопросы. Что же собой представляют продукты митохондриальных генов и в каких именно супермега-жизненноважных клеточных процессах они принимают участие?

Как оказалось, некоторые из вышеперечисленных патологий могут возни-кать при нарушениях синтеза 7 субъединиц НАДН-дегидрогеназного комплек-са, 2 субъединиц АТФ-синтетазы, 3 субъединиц цитохром-с-оксидазы и 1 субъединицы убихинол-цитохром-с-редуктазы(цитохром b), которые и являют-ся генными продуктами митохондрий. Исходя из этого можно сделать вывод о существовании ключевой роли данных белков в процессах клеточного дыхания, окисления жирных кислот и синтеза АТФ, переноса электронов в электронтран-спортной системе внутренней мт мембраны, функционирования антиоксидант-ной системы и т. д.

Судя по последним данным о механизмах апоптоза, многие ученые пришли к выводу о наличии центра контроля апоптоза именно...

Роль митохондриальных белков также была показана при применении антибиотиков, блокирующих мт синтез. Если клетки человека в культуре ткани обработать антибиотиком, например тетрациклином или хлорамфениколом, то после одного-двух делений их рост прекратится. Это связано с ингибированием митохондриального белкового синтеза, приводящим к появлению дефектных митохондрий и как следствие к недостаточному образованию АТР. Почему же тогда антибиотики можно использовать при лечении бактериальных инфекций? Есть несколько ответов на этот вопрос:

1. Некоторые антибиотики (такие, как эритромицин) не проходят через внутрен-нюю мембрану митохондрий млекопитающих.

2. Большинство клеток нашего тела не делятся или делятся очень медленно, поэтому столь же медленно происходит и замена существующих митохондрий новыми (во многих тканях половина митохондрий заменяется примерно за пять дней или еще дольше). Таким образом, количество нормальных митохондрий снизится до критического уровня только в том случае, если блокада митохондриального белкового синтеза будет поддерживаться на протяжении многих дней.

3. Определенные условия внутри ткани препятствуют проникновению некоторых препаратов в митохондрии наиболее чувствительных клеток. Например, высокая концентрация Са2+ в костном мозге приводит к образованию Са2+-тетрациклинового комплекса, который не может проникнуть в быстро делящиеся (и потому наиболее уязвимые) предшественники клеток крови.

Эти факторы дают возможность использовать некоторые препараты, ингиби-рующие митохондриальный синтез белка, в качестве антибиотиков при лечении высших животных. Только два таких препарата оказывают побочное действие: длительное лечение большими дозами хлорамфеникола может привести к нарушению кроветворной функции костного мозга (подавить образование эритроцитов и лейкоцитов), а длительное применение тетрациклина - к поврежде-нию кишечного эпителия. Но в обоих случаях еще не вполне ясно, вызываются ли эти побочные эффекты блокадой биогенеза митохондрий или какими-то иными причинами.

Вывод

Структурно-функциональные особенности мт генома состоят в следу-ющем. Во-первых, установлено, что мтДНК передается от матери всем ее

потомкам и от ее дочерей всем последующим поколениям, но сыновья не передают свою ДНК (материнское наследование). Материнский характер

наследования мтДНК, вероятно, связан с двумя обстоятельствами: либо доля отцовских мтДНК так мала (по отцовской линии может передаваться не

более одной молекулы ДНК на 25 тыс. материнских мтДНК), что они не могут быть выявлены существующими методами, либо после оплодотворения блоки-руется репликация отцовских митохондрий. Во-вторых, отсутствие комбинати-вной изменчивости - мтДНК принадлежит только одному из родителей, сле-довательно рекомбинационные события, характерные для ядерной ДНК в мейо-зе, отсутствуют, а нуклеотидная последовательность меняется из поколения в поколение только за счет мутаций. В-третьих, мтДНК не имеет интронов

(большая вероятность, что случайная мутация поразит кодирующий район ДНК), защитных гистонов и эффективной ДНК-репарационной системы -все это определяет в 10 раз более высокую скорость мутирования, чем в ядерной ДНК. В-четвертых, внутри одной клетки могут сосуществовать одновременно нормальные и мутантные мтДНК -явление гетероплазмии (присутствие толь-ко нормальных или только мутантных мтДНК называется гомоплазмией). Наконец, в мтДНК транскрибируются и транслируются обе цепи, а по ряду ха-рактеристик генетический код мтДНК отличается от универсального (UGA кодирует триптофан, AUA кодирует метионин, AGA и AGG являются стоп-

кодонами).

Эти свойства и вышеуказанные функции мт-генома сделали иссле-дование изменчивости нуклеотидной последовательности мтДНК неоценимым инструментом для врачей, судебных медиков, биологов-эволюционистов,

представителей исторической науки в решении своих специфических задач.

Начиная с 1988 г., когда было открыто, что мутации генов мтДНК лежат в основе митохондриальных миопатий (J. Y. Holt et al., 1988) и наследственной оптической нейропатии Лебера (D. C. Wallace, 1988), дальнейшее систематичес-кое выявление мутаций мт-генома человека привело к формированию концеп-ции митохондриальных болезней (МБ). В настоящее время патологические му-тации мтДНК открыты в каждом типе митохондриальных генов.

Список литературы

1. Скулачев, митохондрии и кислород, Сорос. образоват. журн.

2. Основы биохимии: В трех томах, М.: Мир, .

3. Nicholes D. G. Bioenergetics, An Introd. to the Chemiosm. Th., Acad. Press, 1982.

4. Stryer L. Biochemistry, 2nd ed. San Fransisco, Freeman, 1981.

5. Скулачев биологических мембран. М., 1989.

6. , Ченцов ретикулум: Строение и некоторые функции // Итоги науки. Общие проблемы биологии. 1989

7. Ченцов цитология. М.: Изд-во МГУ, 1995

8. , Сфера компетенции митохон-дриального генома // Вестн. РАМН, 2001. ‹ 10. С. 31-43.

9. Holt I. J, Harding A. E., Morgan -Hughes I. A. Deletion of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 1988, 331:717-719.

10. и др. Геном человека и гены предрасположенности. СПб., 2000

11. , Митохондриальный геном. Новосибирск, 1990.

12. // Сорос. образоват. журн. 1999. №10. С.11-17.

13. Роль симбиоза в эволюции клетки. М., 1983.

14. // Сорос. образоват. журн. 1998. №8. С.2-7.

15. // Сорос. образоват. журн. 2000. №1. С.32-36.

Киевский Национальный Университет им. Тараса Шевченка

Биологический факультет

Реферат

на тему:

“Роль материнского генома в развитии потомка”

с туд е нта IV курса

кафедры биохимии

Фролова Артема

Киев 2004

План :

Вступление...............................................................................1

Симбиотическая теория происхождения митохондрий......2

Роль клеточного ядра в биогенезе митохондрий...................................5

Транспортные системы митохондрий.....................................................7

Размеры и форма митохондриальных геномов..................10

Функционирование митохондриального генома...............14

Значение наличия собственной генетической системы для митохондрий..............................................................................19

Цитоплазматическая наследственность..............................20