Резистор в схеме двуполярного блока питания умзч. Простой импульсный бп для умзч. Импульсные трансформаторы в БП

Схема относительно просто и представляет собой двухполярный стабилизированный блок питания. Плечи блока питания зеркальны, поэтому схемы абсолютно симметрична.

Технические характеристики блока питания:
Номинальное входное напряжение: ~18...22В
Максимальное входное напряжение: ~28В (ограничено напряжение конденсаторов)
Максимальное входное напряжение (теоретически): ~70В (ограничено максимальным напряжением выходных транзисторов)
Диапазон выходных напряжений (при ~20В на входе): 12...16В
Номинальный выходной ток (при выходном напряжении 15В): 200мА
Максимальный выходной ток (при выходном напряжении 15В): 300мА
Пульсации напряжения питания (при номинальном выходном токе и напряжении 15В): 1,8мВ
Пульсации напряжения питания (при максимальном выходном токе и напряжении 15В): 3,3мВ

Данный блок питания можно использовать для питания предварительных усилителей. БП обеспечивает довольно низкий уровень пульсаций напряжения питания, при довольно большом (для предварительных усилителей) токе.

В качестве аналогов транзисторов MPSA42/92 можно применить транзисторы KSP42/92 или 2N5551/5401. Не забывайте сверять цоколевку.
Транзисторы BD139/BD140 можно заменить на BD135/136 или на другие транзисторы с аналогичными параметрами, опять же про цоколевку не забываем.

Транзисторы VT1 и VT6 должны быть установлены на теплоотводе, место для которого предусмотрено на печатной плате.

В качестве стабилитронов VD2 и VD3 можно применять любые стабилитроны на напряжение 12В.

Очень часто бывает что у радиолюбителя есть трансформатор, но только с одной обмоткой, а необходимо получить на выходе двухполярное напряжение. Именно для этих целей можно применить следующую схему:

Схема отличается своей простотой и универсальностью. На вход схемы можно подавать переменное напряжение в широком диапазоне, ограниченном только лишь допустимым напряжением диодов моста, допустимым напряжением конденсаторов питания и напряжением КЭ транзисторов. Выходное напряжение каждого из плеч будет равно половине общего напряжения питания или (Uвх*1,41)/2, например: при входном переменном напряжении 20В, выходное напряжение одного плеча будет равно (20*1,41)/2=14В.

В качестве транзисторов VT1 и VT2 можно применять ЛЮБЫЕ комплементарные транзисторы, следует только не забывать о цоколевке. Хорошими вариантами замены могут быть MPSA42/92, KSP42/92, BC546/556, КТ3102/3107 и так далее. Следует так же учитывать при замене транзисторов на аналоги их максимальное допустимое напряжение КЭ, оно должно быть не менее выходного напряжения плеча.

В своей практике для питания УМЗЧ я люблю применять для питания УМЗЧ трансформаторы с 4мя одинаковыми вторичными обмотками, в частности трансформатор ТА196, ТА163 и аналогичные. При использовании таких трансформаторов удобно использовать в качестве выпрямителя не мостовую, а двухполупериодовую полу-мостовую схему. Схема самого блока питания представлена ниже:

Для данной схемы можно применять не только трансформаторы серии ТА, ТАН, ТПП, ТН, но и любые другие трансформаторы с 4мя одинаковыми по напряжению обмотками.

На основе трансформатор ТА196 или других трансформаторов с 4мя вторичными обмотками можно организовать следующую схему:

Напряжение +/-40В (или другое, в зависимости от напряжения на обмотках вашего трансформатора) используется для питания усилителя мощности. Шины +/-15В можно использовать для питания предусилителя и входного буфера. Шину +12В можно использовать для вспомогательных нужд, например: для питания вентилятора, защиты или других не требовательных к качеству питания устройств.

В качестве стабилитрона 1N4742 можно применять любой другой на напряжение 12В, вместо 1N4728 - на напряжение 3,3В.

Вместо транзисторов BD139/140 можно использовать любую другую комплементарную пару транзисторов средней мощности на ток 1-2А. Транзисторы VT1, VT2 и VT3 необходимо устанавливать на радиатор.

Нумерация выводов соответствует нумерации выводов трансформатора ТА196 и аналогичных.

Фотографии некоторых из представленных блоков питания.

Ко всем блокам питания прилагаются проверенные 100% рабочие печатные платы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема 1: Маломощный стабилизированный блок питания для предусилителей
VT1 Биполярный транзистор

BD139

1 Аналог:BD135 В блокнот
VT6 Биполярный транзистор

BD140

1 Аналог:BD136 В блокнот
VT2, VT3 Биполярный транзистор

MPSA42

2 Аналог:KSP42, 2N5551 В блокнот
VDS1, VDS2 Выпрямительный диод

1N4007

8 В блокнот
VT4, VT5 Биполярный транзистор

MPSA92

2 Аналог:KSP92, 2N5401 В блокнот
VD1, VD4 Выпрямительный диод

1N4148

2 В блокнот
VD2, VD3 Стабилитрон

1N4742

2 Любые стабилитроны на напряжение 12В В блокнот
C1, C6, C15, C18 Конденсатор 2.2 мкФ 4 Керамика В блокнот
C2-C5, C16, C17, C19, C20 Конденсатор 1000 мкФ 8 Электролит на 50В В блокнот
C7, C9, C21, C23 Конденсатор 100 мкФ 4 Электролит на 50В В блокнот
C8, C10, C22, C24 Конденсатор 100 нФ 4 Керамика В блокнот
C11, C14 Конденсатор 220 пФ 2 Керамика В блокнот
C12, C13 Конденсатор 1 мкФ 2 Электролит на 50В или керамика В блокнот
R1, R12 Резистор

10 Ом

2 В блокнот
R2, R10 Резистор

10 кОм

2 В блокнот
R3, R11 Резистор

33 кОм

2 В блокнот
R4, R9 Резистор

4.7 кОм

2 В блокнот
R5, R7 Резистор

18 кОм

2 В блокнот
R6, R8 Резистор

1 кОм

2 В блокнот
Схема 2: Маломощный блок питания с преобразованием однополярного напряжения в двухполярное
VT1 Биполярный транзистор

2N5551

1 Аналог:KSP42, MPSA42 В блокнот
VT2 Биполярный транзистор

2N5401

1 Аналог:KSP92, MPSA92 В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VD1, VD2 Выпрямительный диод

1N4148

2 В блокнот
C1-C4, C6, C7 Конденсатор 2200 мкФ 6 Рабочее напряжение в зависимости от входного В блокнот
C5, C8 Конденсатор 100 нФ 2 В блокнот
R1, R2 Резистор

3.3 кОм

2 В блокнот
Схема 3: Мощный двухполярный блок питания с полу-мостовым выпрямлением
VD1-VD4 Выпрямительный диод

FR607

4 В блокнот
C1, C5 Конденсатор 15000 мкФ 2 Электролит на 50В В блокнот
C2, C3, C7, C8 Конденсатор 1000 мкФ 4 Электролит на 50В В блокнот
C4, C6 Конденсатор 1 мкФ 2 В блокнот
F1-F4 Предохранитель 5 А 4 В блокнот
Схема 4: Мощный блок питания с полу-мостовым выпрямлением
VT1, VT3 Биполярный транзистор

BD139

2 Аналог:BD135 В блокнот
VT2 Биполярный транзистор

BD140

1 Аналог:BD136

Сейчас редко кто внедряет в самодельную конструкцию усилителя сетевой трансформатор, и правильно - импульсный бп более дешевый, легкий и компактный, а хорошо собранный почти не отдает помех в нагрузку (либо помехи сведены к минимуму).

Разумеется, не спорю, сетевой трансформатор гораздо, гораздо надежней, хотя и современные импульсники, напичканные всевозможными защитами тоже неплохо справляются со своей задачей.

IR2153 - я бы сказал уже легендарная микросхема, которая применяется радиолюбителями очень часто, и внедряется именно в сетевые импульсные источники питания. Микросхема из себя представляет простой полумостовой драйвер и в схемах иип работает в качестве генератора импульсов.

На основе данной микросхемы строятся блоки питания от нескольких десятков до нескольких сотен ватт и даже до 1500 ватт, разумеется с ростом мощности будет усложняться схема.

Тем не менее не вижу смысла делать иип высокой мощности с применением именно этой микросхемы, причина - невозможно организовать выходную стабилизацию или контроль, и не только Микросхема не является ШИМ контроллером, следовательно ни о каком ШИМ управлении не может идти и речи, а это очень плохо. Хорошие иип как право делают на двухтактных микросхемах ШИМ, к примеру ТЛ494 или ее сородичи и т.п, а блок на IR2153 в большей степени блок начинающего уровня.

Перейдем к самой конструкции импульсного источника питания. Все собрано по даташиту - типичный полумост, две емкости полумоста, которые постоянно находятся в цикле заряд/разряд. От емкости этих конденсаторов будет зависеть мощность схемы в целом (ну разумеется не только от них). Расчетная мощность именно этого варианта составляет 300 ватт, мне больше и не нужно, сам блок для запитки двух каналов унч. Емкость каждого из конденсаторов 330мкФ, напряжение 200 Вольт, в любом компьютерном блоке питания как раз стоят такие конденсаторы, по идее схематика комповых бп и нашего блока в чем то схоже, в обеих случаях топология - полумост.

На входе блока питания тоже все как положено - варистор для защиты от перенапряжений, предохранитель, сетевой фильтр ну и разумеется выпрямитель. Полноценный диодный мост, который можно и взять готовый, главное, чтобы мост или диоды имели обратное напряжение не менее 400 Вольт, в идеале 1000, и с током не менее 3Ампер. Разделительный конденсатор - пленка, 250 В а лучше 400, емкость 1мкФ, к стати - тоже можно найти в компьютерном блоке питания.

Трансформатор Рассчитан по программе, сердечник от компового бп, габаритные размеры увы указать не могу. В моем случае первичная обмотка 37 Витков проводом 0,8мм, вторичная 2 по 11 витков шиной из 4-х проводов 0.8мм. С таким раскладом выходное напряжение в районе 30-35 Вольт, разумеется, намоточные данные будут у всех разные, в зависимости от типа и габаритных размеров сердечника.

Усилитель звуковой частоты (УЗЧ), или усилитель низкой частоты (УНЧ) является одним из самых распространенных электронных устройств. Все мы получаем звуковую информацию, используя ту или иную разновидность УНЧ. Не все знают, но усилители низкой частоты используются также в измерительной технике, дефектоскопии, автоматике, телемеханике, аналоговой вычислительной технике и других областях электроники.

Хотя, конечно же, основное применение УНЧ – донести до нашего слуха звуковой сигнал с помощью акустических систем, преобразующих электрические колебания в акустические. И сделать это усилитель должен максимально точно. Только в этом случае мы получаем то удовольствие, которое доставляют нам любимая музыка, звуки и речь.

С появления в 1877 фонографа Томаса Эдисона до настоящего времени, ученые и инженеры боролись за улучшение основных параметров УНЧ: прежде всего за достоверность передачи звуковых сигналов, а также за потребительские характеристики, такие как потребляемая мощность, размеры, простота изготовления, настройки и использования.

Начиная с 1920-ых годов сформировалась буквенная классификация классов электронных усилителей, которая используется и по сей день. Классы усилителей отличаются режимами работы применяемых в них активных электронных приборов – электронных ламп, транзисторов и т.д. Основными «однобуквенными» классами являются A, B, C, D, E, F, G, H. Буквы обозначений классов могут сочетаться в случае совмещения некоторых режимов. Классификация не является стандартом, поэтому разработчики и производители могут использовать буквы достаточно произвольно.

Особое место в классификации занимает класс D. Активные элементы выходного каскада УНЧ класса D работают в ключевом (импульсном) режиме, в отличие от остальных классов, где большей частью используется линейный режим работы активных элементов.

Одним из основных преимуществ усилителей класса D является коэффициент полезного действия (КПД), приближающийся к 100%. Это, в частности, приводит к уменьшению рассеиваемой активными элементами усилителя мощности, и, как следствие, уменьшению размеров усилителя за счет уменьшения размеров радиатора. Такие усилители предъявляют значительно меньшие требования к качеству источника питания, который может быть однополярным и импульсным. Другим преимуществом можно считать возможность применения в усилителях класса D цифровых методов обработки сигнала и цифрового управления их функциями – ведь именно цифровые технологии преобладают в современной электронике.

С учетом всех этих тенденций компания Мастер Кит предлагает широкий выбор усилителей класса D , собранных на одной и той же микросхеме TPA3116D2, но имеющих различное назначение и мощность. А для того, чтобы покупатели не тратили время на поиски подходящего источника питания, мы подготовили комплекты усилитель + блок питания , оптимально подходящие друг к другу.

В этом обзоре мы рассмотрим три таких комплекта:

  1. (Усилитель НЧ D-класса 2х50Вт + источник питания 24В / 100Вт / 4,5A);
  2. (Усилитель НЧ D-класса 2х100Вт + источник питания 24В / 200Вт / 8,8A);
  3. (Усилитель НЧ D-класса 1х150Вт + источник питания 24В / 200Вт / 8,8A).

Первый комплект предназначен, прежде всего для тех, кому необходимы минимальные размеры, стереозвук и классическая схема регулировки одновременно в двух каналах: громкость, низкие и высокие частоты. Он включает в себя и .

Сам двухканальный усилитель имеет беспрецедентно маленькие размеры: всего 60 х 31 х 13 мм, не включая ручек регуляторов. Размеры блока питания 129 х 97 х 30 мм, вес – около 340 г.

Несмотря на небольшие размеры, усилитель отдает в нагрузку 4 ома честные 50 ватт на канал при напряжении питания 21 вольт!

В качестве предварительно усилителя применена микросхема RC4508 – двойной специализированный операционный усилитель для аудиосигналов. Он позволяет идеально согласовать вход усилителя с источником сигнала, имеет крайне низкие нелинейные искажения и уровень шума.

Входной сигнал подается на трехконтактный разъем с шагом контактов 2,54 мм, напряжение питания и акустические системы подключаются с помощью удобных винтовых разъемов.

На микросхему TPA3116 с помощью теплопроводящего клея установлен небольшой радиатор, площади рассеяния которого вполне хватает даже на максимальной мощности.

Обращаем ваше внимание на то, что с целью экономии места и уменьшения размеров усилителя отсутствует защита от неверной полярности подключения источника питания (переполюсовки), поэтому будьте внимательны при подаче питания на усилитель.

С учетом небольших размеров и эффективности сфера применения комплекта весьма широка – от замены устаревшего или вышедшего из строя старого усилителя до очень мобильного звукоусилительного комплекта для озвучивания мероприятия или вечеринки.

Пример использования такого усилителя приведен .

На плате отсутствуют отверстия для крепления, но для этого с успехом можно использовать потенциометры, имеющие крепления под гайку.

Второй комплект включает в себя на двух микросхемах TPA3116D2, каждая из которых включена в мостовом режиме и обеспечивает до 100 ватт выходной мощности на канал, а также с выходным напряжением 24 вольта и мощностью 200 ватт.

С помощью такого комплекта и двух 100-ваттных акустических систем можно озвучить солидное мероприятие даже вне помещения!

Усилитель снабжен регулятором громкости с выключателем. На плате установлен мощный диод Шоттки для защиты от переполюсовки блока питания.

Усилитель снабжен эффективными фильтрами низкой частоты, установленными согласно рекомендациям производителя микросхемы TPA3116, и обеспечивающими совместно с ней высокое качество выходного сигнала.

Питающее напряжение и акустические системы подключаются с помощью винтовых разъемов.

Входной сигнал может быть подан как на трехконтактый разъем с шагом 2,54 мм, так и с помощью стандартного аудиоразъема типа Jack 3,5 мм.

Радиатор обеспечивает достаточное охлаждение обеих микросхем и прижимается к их термопадам винтом, расположенным с нижней части печатной платы.

Для удобства использования на плате также установлен светодиод зеленого свечения, сигнализирующий о включении питания.

Размеры платы, с учетом конденсаторов и без учета ручки потенциометра составляют 105 х 65 х 24 мм, расстояния между крепежными отверстиями - 98,6 и 58,8 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Третий комплект представляет собой l и с выходным напряжением 24 вольта и мощностью 200 ватт.

Усилитель обеспечивает до 150 ватт выходной мощности на нагрузке 4 ома. Основное применение этого усилителя – построение качественного и энергоэффективного сабвуфера.

По сравнению со многими другими специализированными сабвуферными усилителями, MP3116btl отлично раскачивает низкочастотные динамики достаточно большого диаметра. Это подтверждается отзывами покупателей рассматриваемого УНЧ. Звук получается насыщенный и яркий.

Радиатор, занимающий большую часть площади печатной платы обеспечивает эффективное охлаждение TPA3116.

Для согласования входного сигнала на входе усилителя применена микросхема NE5532 – двухканальный малошумящий специализированный операционный усилитель. Он имеет минимальные нелинейные искажения и широкую полосу пропускания.

На входе также установлен регулятор амплитуды входного сигнала со шлицем под отвертку. С его помощью можно подстроить громкость сабвуфера под громкость основных каналов.

Для защиты от переполюсовки питающего напряжения на плате установлен диод Шоттки.

Питание и акустические системы подключаются с помощью винтовых разъемов.

Размеры платы усилителя 73 х 77 х 16 мм, расстояния между крепежными отверстиями – 69,4 и 57,2 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Во все комплекты включены импульсные источники питания компании MEAN WELL.

Основанная в 1982 году, компания является ведущим производителем импульсных источников питания в мире. В настоящее время корпорация MEAN WELL состоит из пяти финансово независимых компаний-партнеров на Тайване, в Китае, США и Европе.

Продукция MEAN WELL характеризуется высоким качеством, низким процентом отказов и длительным сроком службы.

Импульсные источники питания, разработанные на современной элементной базе, удовлетворяют самым высоким требованиям по качеству выходного постоянного напряжения и отличаются от обычных линейных источников малым весом и высоким КПД, а также наличием защиты от перегрузки и короткого замыкания на выходе.

Источники питания LRS-100-24 и LRS-200-24, используемые в представленных комплектах, имеют светодиодный индикатор включения и потенциометр для точной регулировки выходного напряжения. Перед подключением усилителя проверьте выходное напряжения, и при необходимости выставьте его уровень на 24 вольта с помощью потенциометра.

В примененных источниках используется пассивное охлаждение, поэтому они совершенно бесшумны.

Необходимо отметить, что все рассмотренные усилители могут быть с успехом применены для конструирования звуковоспроизводящих систем для автомобилей, мотоциклов и даже велосипедов. При питании усилителей напряжением 12 вольт выходная мощность будет несколько меньше, но качество звука не пострадает, а высокий КПД позволяет эффективно питать УНЧ от автономных источников питания.

Также обращаем ваше внимание на то, что все рассмотренные в этом обзоре устройства можно приобрести по отдельности и в составе других комплектов на сайте .

Существует множество схем ИИП, особенно на просторах интернета, а вот рабочих мало, единицы. Сколько было собрано, сколько сожжено дорогостоящих полевых транзисторов и микросхем! Некоторые блоки удавалось заставить работать, некоторые нет. Приведенная ниже схема начинает работать сразу, некритична к выбору деталей, практически не дает помех, доступна для сборки даже начинающим радиолюбителям.

На первый взгляд схема кажется сложной, но при поблочном рассмотрении все становится ясно и просто. Все детали недороги, легкодоступны, имеют множество замен, большинство деталей имеется в компьютерных блоках питания. Было собрано четыре блока, разной конфигурации, на разных печатных платах, все заработали сразу и работают до сих пор. Последний блок предназначен для известного усилителя « ». За основу взята схема , дополнена устройством плавного запуска, переведена на современную элементную базу. Некоторые элементы были перерасчитаны для получения большей мощности и снижения пульсаций выпрямленного напряжения.

Технические характеристики:
Номинальная мощность: 500Вт
Частота преобразования: 100 кГц
Выходное напряжение: +/ - 65В
КПД 0,75

Мощность блока при использовании этих же деталей легко может достигать 800Вт, требуется только перерасчет трансформатора ТР2.

Краткое описание работы

Задающий генератор собран на элементах DD1, подстроечным резистором частота меняется в пределах 100-200 кГц. Триггер на элементе DD2 снижает частоту вдвое и формирует импульсы с более крутыми фронтами. Через комплементарный эмиттерный повторитель на транзисторах VT3 – VT4 импульсы проходят на трансформатор ТР1 и управляют мощными транзисторами VT5,VT6. Задающий генератор питается от отдельного стабилизатора собранного на элементах С5,С6,С7,С8 диодах D7-D10 и транзисторе VT2. Устройство плавного запуска выполнено на тиристоре VD1. При включении блока в сеть, конденсатор фильтра C10 заряжается через резистор R5. Конденсатор С4 заряжается через резисторы R3 R4. При достижении на этом конденсаторе напряжения примерно 1В, тиристор открывается и шунтирует R5.
Сетевой фильтр и выпрямитель особенностей не имеют. За выпрямителем следует транзисторный фильтр на транзисторе VT1, который уменьшает пульсации выпрямленного напряжения в 125 раз, для того, что бы исключить модуляцию прямоугольного сигнала напряжением частотой 100Гц.

Напряжение, полученное с трансформатора ТР2 (обмотки 2 и 3) выпрямляется диодным мостом D13-D16 и через дроссель L2 поступает на выходной фильтр C16,C17,L3,L4,C18,C19,C20,C21. Дроссель L2 необходим главным образом для ограничения зарядного тока через диоды моста, т.к. в выходном фильтре применены конденсаторы большой емкости. Более подробно с работой схемы можно ознакомиться в .

Принципиальная схема:

Конструкция и детали

Конструктивно блок выполнен на трех печатных платах: на одной - силовая часть блока с устройством плавного запуска и транзисторным фильтром, на другой - задающий генератор с собственным блоком питания, на третьей трансформатор ТР2 и выходной фильтр. Выходной фильтр может быть собран непосредственно на плате усилителя, тогда ТР2 крепится к шасси. Компановка может быть различной. Рисунки печатных плат 1 и 2 прилагаются. Ввиду чрезвычайной простоты плата выходного фильтра не разрабатывалась. При использовании разных деталей (диоды, конденсаторы) рисунок платы будет индивидуальным в каждом конкретном случае. Конденсаторы С14, С15 и резисторы R4,R5,R7,R11,R12 установлены на плате стоя. Конденсаторы С14, С15 и резисторы R11,R12 в верхней точке соединяются и образуют точку подключения нижнего по схеме вывода обмотки 1 трансформатора ТР2. Тиристор VD1 и транзистор VT1 установлены на одном радиаторе через изолирующие прокладки. При использовании тиристора в другом корпусе можно установить его на отдельный радиатор.
При сборке нужно стараться все соединения делать возможно короче.

О деталях

Микросхемы серии 511 заменять другими не следует. Можно использовать импортный аналог: для К511ЛА1 аналогом является Н102, для К511ТВ1 аналог Н110.

Транзисторы. На месте транзисторов VT3, VT4 можно использовать практически любые высокочастотные транзисторы: ВС639 и ВС640, ВС635 и ВС636, ВС337 и ВС638, КТ 315 и КТ361, КТ502 и КТ503 и др. желательно только подобрать их с наибольшим коэффициентом усиления.

Транзисторы VT5,VT6 лучше выбрать в большом корпусе. При использовании транзисторов в корпусе ТО-220 необходимо скорректировать печатную плату. Можно их сделать и выносными. Для замены подойдут транзисторы серии 2SC – 3996 – 3998, 5144, 2204, 3552, 3042, 3306, 5570, 2625 и др. с напряжением не менее 400В и током коллектора не менее 10А. Их желательно подобрать с близким коэффициентом усиления. При установке этих транзисторов на общий радиатор надо использовать слюдяные прокладки смазанные пастой КТП-8. Площадь радиатора для каждого транзистора должна быть не менее 65см2. Транзистор VT1 можно заменить на КТ898А или А1. Это транзисторы дарлингтона, стоят в коммутаторах транзисторных систем зажигания. Можно поставить транзисторы серии 2SC указанные выше, но придется установить их на отдельный радиатор площадью не менее 150см2. Кроме того придется пересчитать вторичную обмотку трансформатора ТР2, т.к. на транзисторе будет потеря напряжения порядка 20В. Лучше самостоятельно сделать составной транзистор, добавив еще один, например MJE13005,13007,13009 и т.п. Участок схемы приводится. Вместо транзистора КТ815Г можно поставить КТ817Г или BD135, BD137, BD139.

Фрагмент:

Диоды. Диодный мост BR1010 можно заменить на другой, не менее 10А - 400В или отдельные диоды с такими же характеристиками. Мост снабжен небольшим радиатором.
Диоды D11,D12 – любые быстрые на напряжение не менее 400В. Подойдут FR104 – 107, FR154 - FR157, SF16, из отечественных можно поставить КД104А. D5 – FR157, SF16. Диоды 1N4007 можно заменить на КД105Г или другие на ток более 0,5А и напряжением 400В и больше. Диоды КД2997А,Б можно заменить на КД2999А,Б или импортные быстрые диоды с напряжением не менее 200В и током 15 - 20А. В крайнем случае, можно поставить КД213, но по две штуки в плечо параллельно. Из импортных подойдут 15ETH06, 30ETH06, 30EPH06, BYW29-500 и др. Диоды Шоттки можно использовать, если выходное напряжение не превышает 60В. Смотрите даташиты.

Стабилитрон D17 любой на 15В, например КС515 или импортный. Можно составить из двух, например КС175А, Д814А.

Тиристор ВТ151 можно заменить другим с максимальным током не менее 10А и напряжением 400В, например КУ202Н1.

Конденсаторы С2,С3С5,С9,С13-С19 пленочные, С1,С12 – керамика. Конденсаторы С14, С15 можно поставить и меньшей емкости, но не менее 1мкФ. Они должны быть одинаковы и обязательно пленочными, на напряжение не менее 250В. Емкость С2,С3,С9 не критична и ее можно менять. Лучше в большую сторону. Конденсатор С10 составлен из двух емкостью 220 и 330 мкФ 400В. Если блок будет иметь другую мощность, эти конденсаторы следует ставить из расчета 1мкФ на 1Вт мощности. Хотя и используется транзисторный фильтр, емкость этих конденсаторов не следует сильно уменьшать, что бы сохранить жесткость нагрузочной характеристики блока. Конденсатор С8 может быть емкостью 100 – 200мкФ. Конденсаторы С16, С17 могут быть составлены из нескольких меньшей емкости, что даже лучше. Чем больше общая емкость – тем лучше, в разумных пределах. Для облегчения работы по высокой частоте конденсаторов С20, С21 желательно припаять непосредственно к их выводам с обратной стороны платы керамические конденсаторы емкостью 0,033 – 0,1мкФ.

Резисторы - указанной на схеме мощности. R1 – желательно многооборотный. R6 служит для разрядки конденсаторов, номинал 390 – 910кОм. Резисторы R11, R12 должны быть одинаковыми и могут быть номиналом от 47 до 200 кОм. Суммарное сопротивление резисторов R3 и R4 должно быть 43 – 46 кОм.

Дроссели и трансформаторы. Дроссель L1 намотан на кольце из феррита марки М2000 наружным диаметром от 20мм. Намотка ведется в один слой сразу двумя проводами диаметром 0.8-1,2 мм до заполнения. Можно использовать и Ш-образный сердечник, например от блока питания телевизора. Не критично. Дроссель L2 намотан проводом диаметром 1,2мм на чашечном сердечнике из феррита марки М2000 диаметром 35 и более мм. Намотка ведется в два провода до заполнения каркаса. Так как дроссель работает на постоянном токе, в зазор необходимо поместить диэлектрическую прокладку толщиной примерно 0,3мм. Можно попробовать намотать на кольцевой сердечник от дросселя групповой стабилизации компьютерного блока питания. Дроссели L3 L4 готовые из компьютерного блока питания, те, что намотаны толстым проводом. Должны быть одинаковыми. Их можно изготовить самостоятельно, намотав 10-20 витков провода диаметром 1.2мм на кусочки круглого феррита от антенны радиоприемника длиной 25мм.

Трансформатор ТР1 изготовлен на кольце из феррита марки М2000 типоразмера 16*8*6 и содержит 90витков провода ПЭЛШО 0,12 намотанных сразу тремя проводами. Типоразмер, марка провода и число витков не критичны. Для облегчения работы этот трансформатор можно намотать на чашечном магнитопроводе диаметром примерно 20мм так же в три провода. Если нет ничего подходящего, можно намотать и на небольшом Ш-образном ферритовом магнитопроводе.

Самая ответственная часть работы – намотка трансформатора ТР2. Он намотан на сердечнике, состоящего из двух колец типоразмера 40*25*11. Кольца нужно склеить между собой, грани закруглить крупной наждачной бумагой. Затем магнитопровод обматывается двумя слоями лакоткани или фторопластовой ленты. Первичная обмотка намотана в два провода (в параллель) диаметром 0,8мм и содержит 26 витков, равномерно распределенных по кольцу. Поверх первичной обмотки снова два слоя лакоткани. Вторичная обмотка(2,3) мотается в три провода диаметром 0,8мм и содержит 2*13 витков. Порядок работы таков: берем провод необходимой длины, складываем его в 6 слоев, слегка скручиваем для удобства, и мотаем 13 витков равномерно поверх первичной обмотки. Затем прозвонкой разделяем его на две части и соединяем начало одной части с концом другой. Так мы получим две обмотки в три провода и точку соединения. Снова обматываем все лакотканью. Готовый трансформатор можно пропитать парафином, нитролаком или эпоксидной смолой. Но в последнем случае он получится неразборным. Для более точного подбора напряжения необходимо сразу после намотки первичной обмотки намотать 10 витков любого провода, подключить к диодному мосту и замерить напряжение. Затем вычислить необходимое количество витков. Получается примерно 5В на один виток.

При намотке всех дросселей и трансформаторов крайне важно соблюдать начала и концы обмоток. Начала обмоток на схеме помечены точками.

Если нужны другие выходные напряжения, нужно пересчитать количество витков вторичной обмотки. Обмоток может быть и несколько. Если нужно рассчитать трансформатор ТР2 на другую мощность или на другой магнитопровод, необходимо воспользоваться .

Из многих программ выбрана именно эта, как простая и дающая реальные достоверные результаты.

Налаживание начинаем с генератора импульсов. Для этого к сети подключаем только маленькую печатную плату, отдельно от большой. Осциллографом наблюдаем на обмотках 2 и 3 трансформатора ТР1 противофазные прямоугольные импульсы. Затем резистором R1 устанавливаем частоту этих импульсов равной 100 кГц. У многих нет осциллографа, что делать? Берем плату с припаянным сетевым проводом и идем в ближайшее телеателье. Наверняка не откажут в одном измерении. После этого можно подключать и силовую часть блока питания. Сделать это лучше включив в разрыв сетевого провода лампу накаливания мощностью 75-100 Вт. Лампа должна кратковременно загореться и погаснуть. Если горит постоянно, проверяйте правильность сборки. Если все в норме – лампу убираем. Блок без нагрузки включать нельзя, поэтому на время проверки нагрузим его двухватными резисторами 500-600 Ом. Измеряем выходные напряжения. Если напряжения отличаются от расчетных, измерьте напряжение сети – возможно, оно сильно отличается от 220В. Проверяем работу устройства плавного запуска. Для этого подключаем авометр параллельно резистору R5. При включении блока прибор должен показать постоянное напряжение порядка 30В. Через одну-две секунды напряжение должно почти полностью исчезнуть. Параллельно конденсатору С2 можно включить варистор, например JVR-7N391K, или другой, на напряжение около 400В. Отверстия в печатной плате имеются. Блок защищен предохранителем 8А.

Литература:
«РАДИО» №1 1987г. стр.35-37

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 Микросхема К511ЛА1 1 В блокнот
DD2 Микросхема К511ТВ1 1 В блокнот
D1-D4 Диодный мост

BR1010

4 В блокнот
VT1 Биполярный транзистор

BU931P

1 В блокнот
VT2 Биполярный транзистор

КТ815Г

1 В блокнот
VT3 Биполярный транзистор

2N5551

1 В блокнот
VT4 Биполярный транзистор

2N5401

1 В блокнот
VT5, VT6 Биполярный транзистор

MJE13009

2 В блокнот
D5, D11, D12 Выпрямительный диод

HER108

3 В блокнот
D7-D10 Выпрямительный диод

1N4007

4 В блокнот
D13-D16 Диод

КД2997А

4 В блокнот
D17 Стабилитрон

КС515А

1 В блокнот
VD1 Тиристор BT151-800 1 В блокнот
C1 Конденсатор 1500 пФ 1 В блокнот
C2, C3 0.22мкФ 400В 2 В блокнот
C4 Электролитический конденсатор 2200мкФ 10В 1 В блокнот
C5, C9 Электролитический конденсатор 1мкФ 400В 2 В блокнот
C6 Электролитический конденсатор 470мкФ 100В 1 В блокнот
C7 Электролитический конденсатор 10мкФ 10В 1 В блокнот
C8 Электролитический конденсатор 150мкФ 400В 1 В блокнот
C10 Электролитический конденсатор 550мкФ 400В 1 В блокнот
C11 Электролитический конденсатор 100мкФ 25В 1 В блокнот
C12 Конденсатор 0.033 мкФ 1 В блокнот
C13 Конденсатор 0.1 мкФ 1 В блокнот
C14, C15 Электролитический конденсатор 4.7мкФ 250В 2 В блокнот
C16, C17 Электролитический конденсатор 4.7мкФ 160В 2 В блокнот
C18, C19 Конденсатор 0.22 мкФ 2 В блокнот
C20, C21 Электролитический конденсатор 10000мкФ 83В 2 В блокнот
R1 Переменный резистор 22 кОм 1 В блокнот
R2 Резистор

кликните по картинке чтобы увеличить

Управляющим контроллером в данном блоке питания служит TL494. После контроллера стоит полумостовой драйвер IR2110, который собственно и управляет затворами силовых транзисторов. Использование драйвера позволило отказаться от согласующего трансформатора, широко используемого в компьютерных блоках питания. Драйвер IR2110 нагружен на затворы через ускоряющие закрытие полевиков цепочки R24-VD4 и R25-VD5.
Силовые ключи VT2 и VT3 работают на первичную обмотку силового трансформатора. Средняя точка, необходимая для получения переменного напряжения в первичной обмотке трансформатора формируется элементами R30-C26 и R31-C27.
Последовательно с первичной обмоткой силового трансформатора включен трансформатор тока TV1, позволяющий контролировать протекающий через силовые ключи ток и строить на этом токовую защиту. Кроме этого используя выходное напряжение с трансформатора тока можно управлять оборотами вентилятора принудительного охлаждения (VT4).
Стабилизация силовых напряжений производится при помощи дросселя групповой стабилизации L1.
Емкость фильтров первичного питания рассчитывается из отношения 1 мкФ на 1 Вт выходной мощности, а силовые транзистора должны иметь максимальный ток минимум на 30% больше чем ток, протекающий через первичную обмотку силового трансформатора при максимальной мощности.
Несколько слов об алгоритме работы данного блока питания:
В момент подачи сетевого напряжения 220 В емкости фильтров первичного питания С15 и С16 заражаются через резисторы R8 и R11, что не позволяет перегрузиться мосту VD током короткого замыкания полностью разряженных С15 и С16. Одновременно происходит зарядка конденсаторов С1, С3, С6, С19 через линейку резисторов R16, R18, R20 и R22, стабилизатор 7815 и резистор R21.
Как только величина напряжения на конденсаторе С6 достигнет 12 В стабилитрон VD1 "пробивается" и через него начинает течь ток заряжая конденсатор C18 и как только на плюсовом выводе этого конденсатора будет достигнута величина достаточная для открытия тиристора VS2 он откроется. Это повлечет включение реле К1, которое своими контактами зашунтирует токоограничивающие резисторы R8 и R11. Кроме этого открывшийся тиристор VS2 откроет транзистор VT1 и на контроллер TL494 и полумостовой драйвер IR2110. Контроллер начнет режим мягкого старта, длительность которого зависит от номиналов R7 и C13.
Во время мягкого старта длительность импульсов, открывающих силовые транзисторы, увеличиваются постепенно, тем самым постепенно заряжая конденсаторы вторичного питания и ограничивая ток через выпрямительные диоды. Стабилизация выходного напряжения происходит путем изменения длительности импульсов управления силовыми транзисторами при неизменной частоте. Это возможно лишь при условии, когда величина вторичного напряжения силового трансформатора выше требуемой на выходе стабилизатора минимум на 30%, но не более 60%. При увеличении нагрузки выходное напряжение начинает уменьшаться, светодиод оптрона начинает светиться меньше, транзисторы оптрона закрывается, тем самым увеличивая длительность импульсов управления до тех пор, пока действующее напряжение не достигнет величины стабилизации. При уменьшении нагрузки напряжение начнет увеличиваться, светодиод оптрона IC1 начнет светиться ярче, тем самым открывая транзистор и уменьшая длительность управляющих импульсов до тех пор, пока величина действующего значения выходного напряжения не уменьшиться до стабилизируемой величины. Величину стабилизируемого напряжения регулируют подстроечным резистором R26.
Следует отметить, что контроллером TL494 регулируется не длительность каждого импульса в зависимости от выходного напряжения, а лишь среднее значение, т.е. измерительная часть имеет некоторую инерционность. Однако даже при установленных конденсаторах во вторичном питании емкостью 2200 мкФ провалы питания при пиковых кратковременных нагрузках не превышают 5 %, что вполне приемлемо для аппаратуры HI-FI класса. Мы же обычно ставим конденсаторы во вторичном питании 4700 мкФ, что дает уверенный запас на пиковые значения, а использование дросселя групповой стабилизации L1 позволяет контролировать все выходные напряжения.
Данный импульсный блок питания оснащен защитой от перегрузки, измерительным элементом которой служит трансформатор тока TV1. Как только ток достигнет критической величины, открывается тиристор VS1 и зашунтирует питание оконечного каскада контроллера. Импульсы управления исчезают, и блок питания переходит в дежурный режим, в котором может находиться довольно долго, поскольку тиристор VS2 продолжает оставаться открытым - тока протекающего через резисторы R16, R18, R20 и R22 хватает для удержания его в открытом состоянии.
Для вывода блока питания из дежурного режима необходимо нажать кнопку SA3, которая своим контактами зашунтирует тиристор VS2, ток через него перестанет течь и он закроется. Как только контакты SA3 разомкнуться транзистор VT1 закроется, тем самым снимая питание с контроллера и драйвера. Таким образом схема управления перейдет в режим минимального потребления - тиристор VS2 закрыт, следовательно реле К1 выключено, транзистор VT1 закрыт, следовательно контроллер и драйвер обесточены. Конденсаторы С1, С3, С6 и С19 начинают заряжаться и как только напряжение достигнет 12 В откроется тиристор VS2 и произойдет запуск импульсного блока питания.
При необходимости перевести блок питания в дежурный режим можно воспользоваться кнопкой SA2, при нажатии на которую будут соединены база и эмиттер транзистора VT1. Транзистор закроется и обесточит контроллер и драйвер. Импульсы управления исчезнут, исчезнут и вторичные напряжения. Однако питание не будет снято с реле К1 и повторного запуска преобразователя не произойдет.
Немного о деталях:
Силовой трансформатор мы изготавливаем на сердечниках от строчных трансформаторов телевизоров. Однако схожие параметры можно получить и на ферритовых кольцах, правда частоту преобразования не стоит поднимать выше 70 кГц, поскольку даже уже на этой частоте феррит 2000 начинает греться из за внутренних потерь. В качестве дросселя групповой стабилизации мы используем сердечник от ТПИ. Обмотки располагаются встречно, как показано на принципиальной схеме. Сечение проводников рассчитывается из отношения 3-4 А на мм кв. Обмотки наматываются до заполнения окна. В случае использования в качестве сердечника для дросселя групповой стабилизации ферритового кольца лучше использовать кольцо К40х25х11. Обмотки мотаются до уменьшения отверстия внутри до 14...16 мм. В качестве дополнительных фильтрующих индуктивностей мы используем сердечники от фильтров сетевого питания телевизоров, но эти фильтры можно намотать и на кольцах диаметром 20...25 мм. Обмотка мотается до заполнения, тем же проводом, что и дроссель групповой стабилизации.
Для регулировки в качестве нагрузки следует все силовые напряжения нагрузить резисторами мощностью 2 Вт и сопротивлением 4,7к...6,8к. При выходном напряжении 60...90 В это будет имитировать ток покоя усилителей мощности. При более низком выходном напряжении сопротивление следует немного уменьшить.