Определение напряженности в любой точке электрического поля. Как определить направление вектора напряженности

Заряженные тела могут воздействовать друг на друга без соприкосновения через электрическое поле. Поле, которое создается неподвижными электрическими частицами, называется электростатическим.

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это характеристика называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с помощью линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

В том случае, если электрическое поле однородно и вектор его напряженности постоянен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается положительно заряженным телом, линии напряженности направлены от него, а в случае с отрицательно заряженной частицей - по направлению к нему.

Обратите внимание

Вектор напряженности имеет лишь одно направление в каждой точке пространства, поэтому линии напряженности никогда не пересекаются.

Заряженные тела могут влиять друг на друга без соприкосновения через электрическое поле. Поле, которое создается статичными электрическими частицами, именуется электростатическим.

Инструкция

1. Если в электрическое поле, создаваемое зарядом Q, разместить еще один заряд Q0, то оно будет влиять на него с определенной силой. Это колляция именуется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на правильный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

2. В зависимости от определенной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Следственно напряженность электрического поля относится к векторным физическим величинам.

3. От того что напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E идентичен с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

4. Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с поддержкой линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

5. В том случае, если электрическое поле однородно и вектор его напряженности непрерывен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается правильно заряженным телом, линии напряженности направлены от него, а в случае с негативно заряженной частицей – по направлению к нему.

Совет 2: Как обнаружить напряженность электрического поля

Для того дабы обнаружить напряженность электрического поля , внесите в него вестимый пробный заряд. Измерьте силу, которая действует на него со стороны поля и рассчитайте значение напряженности. Если электрическое поле создается точечным зарядом либо конденсатором, рассчитайте его по особым формулам.

Вам понадобится

  • электрометр, динамометр, вольтметр, линейку и транспортир.

Инструкция

1. Определение напряженности произвольного электрического поля Возьмите заряженное тело, размеры которого незначительны по сопоставлению размерами тела, генерирующего электрическое поле. Отлично подойдет заряженный металлический шар с малой массой. Измерьте величину его заряда электрометром и внесите в электрическое поле. Уравновесьте силу, действующую на заряд со стороны электрического поля динамометром и снимите с него показания в ньютонах. Позже этого значение силы, поделите на величину заряда в Кулонах (E=F/q). Итогом будет напряженность электрического поля в вольтах на метр.

2. поля точечного заряда Если электрическое поле генерируется зарядом, величина которого знаменита, для определения его напряженности в некоторой точке пространства удаленной от него, измерьте это расстояние между избранной точкой и зарядом в метрах. Позже этого величину заряда в Кулонах, поделите на измеренное расстояние, возведенное во вторую степень (q/r?). Полученный итог умножьте на показатель 9*10^9.

3. Определение напряженности электрического поля конденсатора Измерьте разность потенциалов (напряжение) между пластинами конденсатора. Для этого параллельно ним присоедините вольтметр, итог зафиксируйте в вольтах. После этого измерьте расстояние между этими пластинами в метрах. Поделите значение напряжения на расстояние между пластинами, итогом будет напряженность электрического поля . Если между пластинами размещен не воздух, определите диэлектрическую проницаемость данной среды и поделите итог не ее значение.

4. Определение электрического поля , сделанного несколькими поля ми Если поле в данной точке является итогом наложения нескольких электрических полей, обнаружьте векторную сумму значений этих полей, с учетом их направления (тезис суперпозиции полей). Если надобно обнаружить электрическое поле, образованное двумя поля ми, постройте их векторы в данной точке, измерьте угол между ними. После этого возведите всякое из их значений в квадрат, обнаружьте их сумму. Вычислите произведение значений напряженности полей, умножьте его на косинус угла, тот, что равен 180? минус угол между векторами напряженностей, а итог умножьте на 2. Позже этого от суммы квадратов напряженностей отнимите полученное число (E=E1?+E2?-2E1E2*Cos(180?-?)). При построении полей рассматривайте, что силовые линии выходят из правильных зарядов и входят в негативные.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Дабы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

1. Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора именуется модулем либо нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба свойства используются для графического изображения разных величин либо действий, скажем, физических сил, движения элементарных частиц и пр.

2. Местоположение вектора в двухмерном либо трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, впрочем модуль и направление останутся бывшими. Эта автономность разрешает применять средства векторной алгебры в разных вычислениях, скажем, определения углов между пространственными прямыми и плоскостями.

3. Весь вектор дозволено задать координатами его концов. Разглядим для начала двухмерное пространство: пускай предисловие вектора находится в точке А (1, -3), а конец – в точке В (4, -5). Дабы обнаружить их проекции, опустите перпендикуляры на ось абсцисс и ординат.

4. Определите проекции самого вектора , которые дозволено вычислить по формуле:АВх = (xb – xa) = 3;ABy = (yb – ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

5. В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую необходимо вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|? = ABx? + ABy? ? |AB| = ?((xb – xa)? + (yb – ya)?) = ?13.

6. Видимо, что для трехмерного пространства формула усложняется путем добавления третьей координаты – аппликат zb и za для концов вектора :|AB| = ?((xb – xa)? + (yb – ya)? + (zb – za)?).

7. Пускай в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = ?(9 + 4 + 25) = ?38.

Видео по теме

Для того дабы определить модуль точечных зарядов идентичной величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же необходимо обнаружить модуль заряда отдельных точечных тел, вносите их в электрическое поле с вестимой напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Вам понадобится

Инструкция

1. Если есть два идентичных по модулю заряда, измерьте силу их взаимодействия при помощи крутильных весов Кулона, которые единовременно являются эмоциональным динамометром. Позже того, как заряды придут в баланс, и проволока весов скомпенсирует силу электрического взаимодействия, на шкале весов зафиксируйте значение этой силы. Позже этого при помощи линейки, штангенциркуля, либо по особой шкале на весах обнаружьте расстояние между этими зарядами. Рассматривайте, что разноименные заряды притягиваются, а одноименные отталкиваются. Силу измеряйте в Ньютонах, а расстояние в метрах.

2. Рассчитайте значение модуля одного точечного заряда q. Для этого силу F, с которой взаимодействуют два заряда, поделите на показатель 9 10^9. Из полученного итога извлеките квадратный корень. Итог умножьте на расстояние между зарядами r, q=r ?(F/9 10^9). Заряд получите в Кулонах.

3. Если заряды неодинаковые, то один из них должен быть предварительно знаменит. Силу взаимодействия знаменитого и неведомого заряда и расстояние между ними определите при помощи крутильных весов Кулона. Рассчитайте модуль неведомого заряда. Для этого силу взаимодействия зарядов F, поделите на произведение показателя 9 10^9 на модуль знаменитого заряда q0. Из получившегося числа извлеките квадратный корень и умножьте итог на расстояние между зарядами r; q1=r ?(F/(9 10^9 q2)).

4. Определите модуль незнакомого точечного заряда, внеся его в электростатическое поле. Если его напряженность в данной точке заблаговременно незнакома, внесите в нее датчик измерителя электростатического поля. Напряженность измеряйте в вольтах на метр. Внесите в точку с вестимой напряженностью заряд и с поддержкой эмоционального динамометра измерьте силу в Ньютонах, действующую на него. Определите модуль заряда, поделив значение силы F на напряженность электрического поля E; q=F/E.

Видео по теме

Обратите внимание!
Вектор напряженности имеет лишь одно направление в всякой точке пространства, следственно линии напряженности никогда не пересекаются.

1 .Два рода электрических зарядов и их свойства. Наименьший неделимый электрический заряд. Закон сохранения электрических зарядов. Закон Кулона. Единица заряда. Электростатическое поле. Способ обнаружения поля. Напряженность как характеристика электростатического поля. Вектор напряженности, его направление. Напряженность электрического поля точечного заряда. Единицы напряженности. Принцип суперпозиции полей.

Электрический заряд - величина инвариантная, т.е. не зависит от системы отсчета, а потому не зависит от того, движется заряд или он покоится.

два рода (типа) эл.зарядов : заряды положительные и заряды отрицательные.

Экспериментально установили, что одноименные заряды отталкиваются, а разноименные притягиваются.

Электрически нейтральное тело должно иметь равное количество положительных и отрицательных зарядов, но и их распределение по объему тела должно быть равномерным.

Закон сохранения эл. заряда : алгебраическая сумма элек. зарядов любой замкнутой системы (системы не обменивающейся зарядами с внешними тепами) остается неизменной, какие бы процессы не происходили внутри этой системы.

Элек. заряды самопроизвольно не создаются и не возникают, они лишь могут разделяться и передаваться от одного тела к другому.

Существует наименьший заряд, его назвали элементарным зарядом - это заряд, который имеет электрон и заряд на теле кратен этому элементарному заряду: е=1,6*10 -19 Кл . Отрицательный элементарный заряд связан с электроном, а положительный- с позитроном, у которого заряд и масса количественно совпадают с зарядом и массой электрона. Однако из-за того, что время жизни позитрона мало, на телах они отсутствуют и поэтому положительную или отрицательную заряженность тел объясняют или недостатком или избытком электронов на телах.

Закон Кулона: силы взаимодействия двух точечных зарядов, находящихся в однородной и изотропной среде, прямо пропорциональны произведению этих зарядов и обратно пропорциональны квадрату расстояния между ними, равны между собой и направлены по прямой, проходящей через эти заряды. г- расстояние между зарядами q 1 и q 2 , k-коэффициент пропорциональности, зависящий от выбора системы физических единиц.

м/Ф, а =8,85*10 -12 Ф/м - диэлектрическая постоянная

Под точечным зарядом следует понимать заряды, сосредоточенные на телах, линейные размеры которых малы по сравнению с расстояниями между ними.

При этом заряд измеряется в кулонах - количество электричества, протекающее через поперечное сечение проводника в одну секунду при токе в 1 ампер.

Сила F направлена вдоль прямой, соединяющей заряды, т.е. является центральной силой и соответствующей притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эту силу называют кулоновская сила.

Позднейшие исследования Фарадея показали, что электрическое взаимодействие между заряженными телами зависят от свойств среды, в которой происходят эти взаимодействия.

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по , которая соединяет эти заряды.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба применяются для графического изображения различных или действий, например, физических сил, движения элементарных частиц и пр.

Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать векторной алгебры в различных вычислениях, например, углов между пространственными прямыми и плоскостями.

Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.

Определите проекции самого вектора , которые можно вычислить по формуле:АВх = (xb - xa) = 3;ABy = (yb - ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb - xa)² + (yb – ya)²) = √13.

Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.

Видео по теме

Для того чтобы определить модуль точечных зарядов одинаковой величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же нужно найти модуль заряда отдельных точечных тел, вносите их в электрическое поле с известной напряженностью и измеряйте силу, с которой поле действует на эти заряды.

5. Электростатика

Закон Кулона

1. Заряженные тела взаимодействуют. В природе существует два вида зарядов, их условно называют положительными и отрицательными. Заряды одного знака (одноименные) отталкиваются, заряды противоположных знаков (разноименные) притягиваются. Единица измерения зарядов в системе СИ – кулон (обозначается

2. В природе существует минимально возможный заряд. Его называют

элементарным и обозначают e . Численное значение элементарного зарядаe ≈ 1,6 10–19 Кл, Заряд электронаq электр = –e , заряд протонаq протона = +e . Все заряды

в природе кратны элементарному заряду.

3. В электрически изолированной системе алгебраическая сумма зарядов остается неизменной. Например, если соединить два одинаковых металлических шарика с зарядами q 1 = 5 нКл = 5 10–9 Кл иq 2 = – 1 нКл, то заряды распределятся

между шариками поровну и заряд q каждого из шариков станет равным

q = (q 1 + q 2 ) / 2= 2 нКл.

4. Заряд называется точечным, если его геометрические размеры значительно меньше расстояний, на которых изучается действие этого заряда на другие заряды.

5. Закон Кулона определяет величину силы электрического взаимодействия двух неподвижных точечных зарядов q 1 иq 2 , расположенных на расстоянииr друг от друга (рис.1)

k |q | |q

F = | F

|= |F

Здесь F 12 - сила, действующая на первый заряд со стороны второго,F 21 - сила,

действующая на второй заряд со стороны первого, k ≈ 9 10 9 Н м2 /Кл2 – постоянная в законе Кулона. В системе СИ эту постоянную принято записывать в виде

k = 4 πε 1 0 ,

где ε 0 ≈ 8,85 10 − 12 Ф/м – электрическая постоянная.

6. Сила взаимодействия двух точечных зарядов не зависит от наличия вблизи этих зарядов других заряженных тел. Это утверждение называют принципом суперпозиции.

Вектор напряженности электрического поля

1. Поместим вблизи неподвижного заряженного тела (или нескольких тел) точечный заряд q . Будем считать, что величина зарядаq настолько мала, что он не вызывает перемещение зарядов в других телах (такой заряд называют пробным).

Со стороны заряженного тела на неподвижный пробный заряд q будет действовать силаF . В соответствии с законом Кулона и принципом суперпозиции силаF будет пропорциональна величине зарядаq . Это означает, что, если величину пробного заряда увеличить, например в 2 раза, то величина силыF возрастет тоже в 2 раза, если знак зарядаq сменить на противоположный, то и сила сменит направление на противоположное. Такую пропорциональность можно выразить формулой

F = qE.

Вектор E называется вектором напряженности электрического поля. Этот вектор зависит от распределения зарядов в телах, создающих электрическое поле, и

от положения точки, в которой указанным способом определен вектор E . Можно сказать, что вектор напряженности электрического поля равен силе, действующей на единичный положительный заряд, помещенный в данную точку пространства.

Определение E G = F G /q можно обобщить и на случай переменных (зависящих от времени) полей.

2. Вычислим вектор напряженности электрического поля, созданного неподвижным точечным зарядом Q . Выберем некоторую точкуA , расположенную на расстоянииr от точечного зарядаQ . Чтобы определить вектор напряженности в этой точке, мысленно поместим в нее положительный пробный зарядq . На

пробный заряд со стороны точечного заряда Q будет действовать сила притяжения или отталкивания в зависимости от знака зарядаQ . Величина этой силы равна

F = k| Q| q. r2

Следовательно, модуль вектора напряженности электрического поля, созданного неподвижным точечным зарядом Q в точкеA , удаленной от него на расстояниеr , равен

E = k r |Q 2 |.

Вектор E G начинается в точкеA и направлен от зарядаQ , еслиQ > 0 , и к зарядуQ ,

если Q < 0 .

3. Если электрическое поле создается несколькими точечными зарядами, то вектор напряженности в произвольной точке можно найти при помощи принципа суперпозиции полей.

4. Силовой линией (линией вектора E ) называют геометрическую линию,

касательная к которой в каждой точке совпадает с вектором E в этой точке.

Иными словами, вектор E направлен по касательной к силовой линии в каждой ее точке. Силовой линии приписывают направление - вдоль вектораE . Картина силовых линий является наглядным образом силового поля, дает представление о пространственной структуре поля, его источниках, позволяет определять направление вектора напряженности в любой точке.

5. Однородным электрическим полем называют поле, вектор E которого одинаков (по величине и направлению) во всех точках. Такое поле создает, например, равномерно заряженная плоскость в точках, расположенных достаточно близко от этой плоскости.

6. Поле однородно заряженного по поверхности шара равно нулю внутри шара,

а вне шара совпадает с полем точечного заряда Q , расположенного в центре шара:

k | Q|

при r > R

E = r2

при r < R

где Q – заряд шара,R – его радиус,r – расстояние от центра шара до точки, в

которой определяется вектор E .

7. В диэлектриках поле ослабляется. Например, точечный заряд или однородно заряженный по поверхности шар, погруженные в масло, создают электрическое поле

E = k ε |r Q 2 |,

где r – расстояние от точечного заряда или центра шара до точки, в которой определяется вектор напряженности,ε - диэлектрическая проницаемость масла. Диэлектрическая проницаемость зависит от свойств вещества. Диэлектрическая проницаемость вакуумаε = 1, диэлектрическая проницаемость воздуха очень близка к единице (при решении задач обычно ее считают равной 1), для иных газообразных, жидких и твердых диэлектриковε > 1.

8. При равновесии зарядов (если нет их упорядоченного движения) напряженность электрического поля внутри проводников равна нулю.

Работа в электрическом поле. Разность потенциалов.

1. Поле неподвижных зарядов (электростатическое поле) обладает важным свойством: работа сил электростатического поля по перемещению пробного заряда из некоторой точки 1 в точку 2 не зависит от формы траектории, а определяется только положениями начальной и конечной точек. Поля, обладающие таким свойством, называются консервативными. Свойство консервативности позволяет определить так называемую разность потенциалов для двух любых точек поля.

Разность потенциалов ϕ 1 −ϕ 2 в точках 1 и 2 равна отношению работыA 12 сил поля по перемещению пробного зарядаq из точки 1 в точку 2 квеличинеэтого заряда:

ϕ1 - ϕ2 =A q 12 .

Такое определение разности потенциалов имеет смысл только потому, что работа не зависит от формы траектории, а определяется положениями начальной и конечной точек траекторий. В системе СИ разность потенциалов измеряется в вольтах: 1В = Дж/Кл.

Конденсаторы

1. Конденсатор состоит из двух проводников (их называют обкладками), отделенных один от другого слоем диэлектрика (рис.2), причем заряд одной

обкладки Q , а другой –Q . Заряд положительной обкладкиQ называют зарядом конденсатора.

2. Можно показать, что разность потенциалов ϕ 1 −ϕ 2 между обкладками пропорциональна величине зарядаQ , то есть, если, например, зарядQ увеличить в 2 раза, то и разность потенциалов увеличится в 2 раза.

ε S

ϕ 1ϕ 2

Рис.2 Рис.3

Такую пропорциональность можно выразить формулой

Q = C (ϕ 1 -ϕ 2 ) ,

где C - коэффициент пропорциональности между зарядом конденсатора и разностью потенциалов между его обкладками. Этот коэффициент называют электроемкостью или просто емкостью конденсатора. Емкость зависит от геометрических размеров обкладок, их взаимного расположения и диэлектрической проницаемости среды. Разность потенциалов называют также напряжением, которое обозначаютU . Тогда

Q = CU.

3. Плоский конденсатор представляет собой две плоские проводящие пластины, расположенные параллельно друг другу на расстоянии d (рис.3). Это расстояние предполагается малым по сравнению с линейными размерами пластин. Площадь каждой пластины (обкладки конденсатора) равнаS , заряд одной пластиныQ , а другой –Q .

На некотором расстоянии от краев поле между пластинами можно считать однородным. Поэтому ϕ 1 -ϕ 2 = Ed , или

U = Ed.

Емкость плоского конденсатора определяется формулой

C = εε d 0 S ,

где ε 0 =8,85 10–12 Ф/м – электрическая постоянная,ε - диэлектрическая проницаемость диэлектрика между обкладками. Из этой формулы видно, что для получения конденсатора большой емкости нужно увеличивать площадь обкладок и уменьшать расстояние между ними. Наличие между обкладками диэлектрика с большой диэлектрической проницаемостьюε также приводит к увеличению емкости. Роль диэлектрика между обкладками состоит не только в повышении диэлектрической проницаемости. Важно также, что хорошие диэлектрики могут выдерживать высокое электрическое поле, не допуская пробоя между обкладками.

В системе СИ емкость измеряют в фарадах. Плоский конденсатор в одну фараду имел бы гигантские размеры. Площадь каждой пластины была бы примерно равна 100 км2 при расстоянии между ними 1 мм. Конденсаторы широко используются в технике, в частности, для накопления зарядов.

4. Если обкладки заряженного конденсатора замкнуть металлическим проводником, то в проводнике возникнет электрический ток и конденсатор разрядится. При протекании тока в проводнике выделится определенное количество теплоты, а это означает, что заряженный конденсатор обладает энергией. Можно показать, что энергия любого заряженного конденсатора (не обязательно плоского) определяется формулой

W = 1 2 CU2 .

Учитывая, что Q = CU , формулу для энергии можно переписать также в виде

W = Q 2 =QU .