Масса бария. Барий. Свойства бария. Применение бария. Примеры решения задач

БАРИЯ СОЕДИНЕНИЯ , в соответствии с положением бария в щелочноземельной подгруппе II группы Менделеевской системы, имеют двухзарядный ион Ва ∙∙ (кроме перекиси бария ВаO 2). Для соединений бария характерен высокий удельный вес, бесцветность, если анионы не окрашены, зеленая окраска пламени и малое количество комплексных соединений. Технически наиболее важны окись и перекись, нерастворимые соли: углекислый, сернокислый и хромовокислый барий и растворимые соли: азотнокислый, хлористый барий и др. Растворимые соли бария ядовиты. Количественно барий определяют в виде BaSО 4 , но в виду чрезвычайной мелкости осадков, полученных при низкой температуре, необходимо осаждение вести из кипящего, слабо подкисленного соляной кислотой раствора. Если в растворе находится азотная кислота , часть осадка переходит в раствор. Кроме того, осадок BaSО 4 может увлечь вследствие адсорбции часть солей . Для отделения от стронция барий осаждают в виде BaSiF 6 . Если соединения бария нерастворимы, то их сплавляют с углекислым калием-натрием и после отмывания сплава водой растворяют в кислоте. Соединения бария чаще всего встречаются в виде минерала барита ; гораздо реже встречается витерит - углекислый барий.

Окись бария ВаО - белое твердое вещество, кристаллизуется кубами, плотность 5,72-5,32, температура плавления 1580°, образует кристаллический гидрат по формуле:

ВаО + 9Н 2 О = Ва(ОН)2 ∙ 8Н 2 О.

Окись бария сравнительно хорошо растворима: при 0° - 1,5 ч. в 100 ч. воды; при 10° - 2,2 ч., при 15° - 2,89 ч., при 20° - 3,48 ч., при 50° - 11,75 ч., при 80° - 90,77 ч. Окись бария получают из азотнокислого бария прокаливанием; при этом получается пористый продукт, пригодный для изготовления из него перекиси. Нагревание ведут в тиглях, в муфельной печи, вначале очень осторожно, чтобы тигли не лопнули. Выделение окислов азота начинается через 4 часа, но для их окончательного удаления тигли прокаливаются в течение нескольких часов при белом калении (окислы азота на 30% можно использовать для получения азотной кислоты). Продукт очень дорог, т. к. дороги: исходный материал, тигли, которые годны лишь на один раз, топливо и т. д. Добывание из витерита окиси бария (ВаСО 3 = ВаО + СО 2) гораздо труднее, чем обжигание извести, т. к. очень легко происходит обратное присоединение СО 2 ; поэтому к витериту примешивают уголь, чтобы СО 2 перешла в СО. Если желательно получить пористый продукт, то необходимо строго придерживаться температуры обжига. Для предохранения от спекания часто прибавляют азотнокислый барий, уголь, деготь или карбид бария, т. е.

ВаСО 3 + Ba(NО 3) 2 + 2С = 2ВаО+ 2NО 2 + 3СО

ЗВаСО 3 + ВаС 2 = 4ВаО + 5СО.

Кроме того, необходимо в возможной мере предохранить продукт от спекания со стенками тигля и от влияния горячих газов. Прокаливание в шахтных печах дает очень чистый продукт (95%) в том случае, если печь построена из материала высокого качества и нагревание ведется генераторным газом, позволяющим точно регулировать температуру. В Италии применяют нагревание в электрических печах, но, по-видимому, при этом получается «оксикарбид» и «бариундум», который, кроме 80-85% окиси бария, содержит 10-12% карбида и 3-5% цианистого бария.

Водная окись бария, едкий барит Ва(ОН) 2 , образует прозрачные моноклинные кристаллы

Ва(ОН) 2 ∙ 8Н 2 0,

теряющие последнюю молекулу воды лишь при темно-красном калении; при светло-красном калении получается ВаО, а при накаливании в струе воздуха - перекись бария. Раствор едкого бария - сильная щелочь - поглощает СО 2 из воздуха, образуя нерастворимую СаСО 3 . В 100 г раствора заключается: при 0° - 1,48 г ВаО, при 10° - 2,17, при 15° - 2,89, при 20° - 3,36, при 50° - 10,5, при 80° - 4,76. Едким баритом пользуются для поглощения СО 2 , добывания едких щелочей из сернокислых, выделения сахара из патоки и т. п. Едкий барит можно получить, прокаливая витерит при пропускании водяного пара, однако проще обжечь ВаСО 3 и действовать на ВаО водой; или же смесь 60% ВаО и 40% BaS, полученную прокаливанием BaSО 4 с углем, растворяют в воде, причем получается Ва(ОН) 2 не только из ВаО, но и из значительной части BaS за счет гидролиза:

2BaS + 2HOH = Ba(OH) 2 + Ba(SH) 2 .

Выкристаллизованное вещество содержит всего 1% примесей. Старыми приемами прибавления к BaS окисей железа или цинка теперь не пользуются. Предложено также получать едкий барит электролизом хлористого бария или хлорноватокислого и хлорнокислого бария в присутствии осадка ВаСО 3 , который растворяется кислотой, образующейся на аноде.

Перекись бария ВаО 2 - белые, перламутрообразные сростки мельчайших кристаллов, очень слабо растворимые в воде (всего 0,168 ч. в 100 ч. воды). Для получения перекиси окись бария нагревают в наклонных трубах или в особых муфелях, которые можно точно держать при желательной температуре (500-600°), причем нагнетается воздух, очищенный от СО 2 и влаги. Самую чистую перекись получают в виде квадратных кристаллов ВаО 2 ∙ 8Н 2 О, для чего сначала растирают техническую перекись с водой, переводят в раствор прибавлением слабой соляной кислоты и осаждают раствором едкого барита или просто прибавляют в 10 раз большее количество 8%-ного раствора барита. Наиболее чистая перекись - серовато-зеленоватая спекшаяся масса, нерастворимая в воде, но взаимодействующая с угольным ангидридом. При накаливании ВаО 2 разлагается на ВаО и кислород. Упругость кислорода над ВаО 2 при 555° - 25 мм, при 790° - 670 мм. Порошок перекиси может способствовать воспламенению волокнистых материалов. В продаже встречаются: лучший сорт - с 90% ВаО 2 и средний - с 80-85%, причем главной примесью является ВаО. Содержание ВаО 2 определяют титрованием 1/10 N-ным КМnO 4 раствора ВаО 2 в очень слабой холодной соляной кислоте (удельный вес 1,01-1,05), осадив предварительно ионы бария слабой серной кислотой. Можно также титровать выделенный перекисью бария из йодистого калия йодсерноватистокислым натрием. Перекись бария применяют для добывания перекиси водорода (причем одновременно получают прочнее белила «бланфикс») и для приготовления дезинфицирующих веществ.

Барий азотистокислый Ba(NО 2) 2 ∙ Н 2 О - гексагональные бесцветные шестигранные призмы, температура плавления 220°. При 0° в 100 ч. воды растворяются 58 ч., при 35° - 97 ч. Добывается путем внесения раствора азотистокислого натрия (360 ч. 96%-ного NaNО 2 в 1000 ч. воды) в смесь 360 ч. NaNО 2 и 610 ч. ВаСl 2 . При высокой температуре выкристаллизовывается NaCl, при дальнейшем охлаждении - Ba(NО 2) 2 .

Барий азотнокислый Ba(NО 3) 2 - бесцветные прозрачные октаэдры, плавятся при 375°; в 100 ч. воды растворимы при 10° - 7 ч., при 20° - 9,2 ч., при 100° - 32,2 ч. При нагревании переходит сначала в азотистокислый барий, а затем в окись бария. Применяется: 1) для приготовления перекиси бария, 2) для зеленых огней в фейерверках, 3) для некоторых взрывчатых веществ. Добывается: 1) обменным разложением при внесении теоретического количества натриевой селитры в горячий раствор хлористого бария (30° Вѐ) и последующей перекристаллизацией, 2) взаимодействием витерита или сернистого бария с азотной кислотой, 3) нагреванием кальциевой селитры с техническим углекислым барием.

Барий марганцевокислый - марганцевая зелень, кассельская зелень, розенштилева зелень. ВаМnO 4 - прочная зеленая краска, пригодная для фресковой живописи; получается прокаливанием смеси соединений бария (едкого барита, азотнокислого бария или перекиси бария) и марганца (двуокиси или окиси).

Барий сернистый BaS - сероватая пористая масса, легко окисляющаяся и притягивающая угольный ангидрид и воду; водой разлагается. Применяется для изготовления большинства бариевых соединений (литопон, прочные белила и т. п.), для выделения сахара из патоки и сгонки шерсти со шкур (депилаторий). Для добывания пользуются прокаливанием смеси тяжелого шпата с углем при 600-800°:

BaS O 4 + 2C = 2C O 2 + BaS,

тогда как при более высокой температуре тратится вдвое больше угля. Основным условием является тесное соприкосновение угля и шпата, что достигается перемалыванием шпата с 30-37% каменного угля и водой во вращающихся мельницах. Обжиг ведется во вращающихся печах, подобных тем, что применяются для цемента или в содовом производстве, причем за короткими печами нужно ставить пыльную камеру для осаждения дыма и сажи. Полученный продукт содержит 60-70% веществ, растворимых в воде, 20-25 % - растворимых в кислотах и 5% остатка. Полученный продукт раскаленным бросают в воду или в водный раствор 1-2% NaOH (36° Вѐ), где половина переходит в водную окись Ва(ОН) 2 , а другая - в гидросернистый Ba(SH) 2 . Этим раствором пользуются непосредственно для приготовления соединений бария (литопона и др.) или для извлечения сахара. При взаимодействии остатка с соляной кислотой получают хлористый барий. На заводах старого типа прокаливание ведут в шамотовых ретортах, равномерно охватываемых пламенем. В реторты загружают хорошо просушенные плиты из угля и шпата, замешанных на воде. Как только исчезнут огоньки горящей окиси углерода, плиты извлекают так, чтобы они попали в герметически закупориваемые железные ящики.

Барий серноватистокислый BaS 2 О 3 ∙ H 2 О образуется из сернистого бария: 1) при свободном доступе воздуха и 2) при обменном разложении с серноватистокислым натрием. Применяется для установления титров при йодометрии.

Барий сернокислый BaSО 4 , тяжелый шпат («прочные», «минеральные», «новые» и т. п. белила), чисто белый, землистый, очень тяжелый порошок, практически нерастворимый в воде и кислотах (растворимость: при 18° в 1 л воды - 2,3 мг). Природный непосредственно перемалывают. Лучшие бесцветные сорта называются «цветочным» шпатом; к желтоватым и розоватым прибавляют ультрамарин. Иногда тяжелый шпат перемалывают и прогревают с соляной кислотой для удаления железа; или же шпат сплавляют с Na 2 SО 4 и из сплава выделяют действием воды. Искусственно его получают: 1) как отброс при приготовлении перекиси водорода; 2) из хлористого бария взаимодействием: а) с серной кислотой, что дает быстро выпадающий осадок, б) с сернонатриевой Na 2 SО 4 или с серномагниевой солью MgSО 4 , что дает медленно выпадающий и обладающий большой кроющей способностью порошок; при производстве важно начисто отмыть серную кислоту; 3) из витерита; если он очень чист, его можно измельчить непосредственно действием H 2 SО 4 , но с прибавкой 2% НСl; если же витерит содержит примеси, его сначала растворяют в соляной кислоте и затем производят осаждение. Сернокислый барий применяют гл. обр. для окраски обойной цветной бумаги, картона и особенно для фотографических бумаг, для светлых масляных красок и лаковых красок из каменноугольных, при изготовлении искусственной слоновой кости и каучука, для примешивания к вводимой в желудок пище при рентгенографии.

Барий углекислый ВаСО 3 - минерал витерит (ромбические кристаллы) или искусственно полученный в виде мельчайшего осадка (удельный вес 4,3); труднее диссоциирует при прокаливании, чем СаСО 3 ; при 1100° давление СО 2 всего 20 мм. Применяется для добывания других соединений бария, при изготовлении кирпичей и терракоты , фарфора, искусственного мрамора и баритового хрусталя. Искусственно его готовят: 1) из сырого раствора сернистого бария впусканием угольного ангидрида; 2) нагреванием сернокислого бария с поташом при 5 atm давления; 3) при разложении угольным ангидридом сахарата бария.

Барий уксуснокислый Ва(С 2 Н 3 О 2) 2 ∙ Н 2 О - легко растворимые кристаллы, применяемые в красильном деле; добываются взаимодействием сернистого или углекислого натрия с уксусной кислотой.

Барий фтористый BaF 2 - белый порошок, слабо растворимый в воде, плавится при 1280°, добывается, растворением углекислого или едкого бария в HF или кипячением криолита с водной окисью бария.

Барий хлористый ВаС l 2 ∙ 2Н 2 O - бесцветные плоские ромбические пластинки (удельный вес 3,05), устойчивы на воздухе, на вкус кисловаты, ядовиты; при нагревании относительно легко теряют первую частицу воды и гораздо труднее вторую; безводный ВаСl 2 прав. системы плавится при 962°. В 100 ч. раствора содержится безводной соли:

ВаСl 2 применяется для изготовления «прочных» белил и для перевода содержащихся в керамических изделиях купоросов в нерастворимый BaSО 4 ; добывается из барита прокаливанием его с углем и хлористым кальцием в содовых печах при 900-1000° в восстановительном пламени, причем можно применять и 70%-ный раствор хлористого кальция, но лучше - твердый хлористый кальций:

BaSО 4 + 4С = BaS + 4СО;

BaS + СаС l 2 = ВаС l 2 + CaS.

При правильном производстве получается почти черный пористый продукт с 50-56% ВаСl 2 . После систематического выщелачивания соль выкристаллизовывают (предварительно пропускают струю угольного ангидрида) до полного удаления сероводорода и выпаривают в лакированных внутри сосудах. Кристаллы отделяют центрифугированием. Если же нужен безводный ВаСl 2 , то соль нагревают в сосудах с мешалками, чтобы получить очень мелкие кристаллы, которые уже затем прокаливают, причем получают 95% ВаСl 2 . Можно получать ВаСl 2 внесением порошка BaS в соляную кислоту, находящуюся в закрытых сосудах, откуда необходимо отводить выделяющийся сероводород в заводскую трубу или сжигать до SO 2 с применением последнего для серной кислоты. Конечно, гораздо выгоднее действовать соляной кислотой на ВаСО 3 .

Барий хлорноватокислый Ва(С lO 3) 2 ∙ Н 2 O - моноклинные призмы, хорошо растворимые в холодной и еще лучше в горячей воде. Легко взрывает при нагревании и при ударе, если смешан с горючим веществом. Применяется в пиротехнике для зеленого пламени. Добывается электролизом при 75° насыщенного раствора ВаСl 2 , при платиновом аноде и графитовом катоде.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

ОПРЕДЕЛЕНИЕ

Барий расположен в шестом периоде II группе главной (A) подгруппе Периодической таблицы.

Относится к семейству s -элементов. Металл. Обозначение - Ba. Порядковый номер - 56. Относительная атомная масса - 137,34 а.е.м.

Электронное строение атома бария

Атом бария состоит из положительно заряженного ядра (+56), внутри которого есть 56 протонов и 81 нейтрон, а вокруг, по шести орбитам движутся 56 электронов.

Рис.1. Схематическое строение атома бария.

Распределение электронов по орбиталям выглядит следующим образом:

56Ba) 2) 8) 18) 18) 8) 2 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 2 .

Внешний энергетический уровень атома бария содержит 2 электрона, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Для атома бария характерно наличие возбужденного состояния. Электроны 6s -подуровня распариваются и один из них занимает вакантную орбиталь 6p -подуровня:

Наличие двух неспаренных электронов свидетельствует о том, что для бария характерна степень окисления +2.

Валентные электроны атома бария можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), m l (магнитное) и s (спиновое):

Подуровень

Примеры решения задач

ПРИМЕР 1

Барий (лат. baryum), ba, химический элемент ii группы периодической системы Менделеева, атомный номер 56, атомная масса 137,34; серебристо-белый металл. Состоит из смеси 7 стабильных изотопов, среди которых преобладает 138 ba (71,66%). При ядерном делении урана и плутония образуется радиоактивный изотоп 140 ba, используемый как радиоактивный индикатор. Б. был открыт шведским химиком К. Шееле (1774) в виде окиси bao , названной «тяжёлой землёй», или баритом (от греч. barys - тяжёлый). Металлический. Б. (в виде амальгамы) получил английский химик Х. Дэви (1808) электролизом влажной гидроокиси ba (oh) 2 с ртутным катодом. Содержание Б. в земной коре 0,05% по массе, в свободном состоянии в природе не встречается. Из минералов Б. промышленное значение имеют барит (тяжёлый шпат) baso 4 и реже встречающийся витерит ВаСОз.

Физические и химические свойства Б. Кристаллическая. решётка Б. кубическая объёмноцентрированная с периодом а = 5,019А; плотность 3,76 г/см 3 , t пл 710°С, t kип 1637-1640°С. Б. - мягкий металл (твёрже свинца, но мягче цинка), его твёрдость по минералогической шкале 2. Б. относится к щёлочноземельным металлам и по химическим свойствам сходен с кальцием и стронцием, превосходя их по активности. Б. реагирует с большинством др. элементов, образуя соединения, в которых он, как правило, 2-валентен (на внешней электронной оболочке атома Б. 2 электрона, её конфигурация 6 s 2 ) . На воздухе Б. быстро окисляется, образуя на поверхности плёнку из окиси (а также перекиси и нитрида Ва з n з). При нагревании легко воспламеняется и горит жёлто-зелёным пламенем. Энергично разлагает воду, образуя бария гидроокись: Ва+2Н 2 o=Ва (ОН) 2 +Н 2 . Из-за химической активности Б. хранят под слоем керосина. Окись ВаО - бесцветные кристаллы; на воздухе легко переходит в карбонат baco 3 , с водой энергично взаимодействует, образуя ba (oh) 2 . Нагреванием bao на воздухе при 500°С получают перекись bao 2 , разлагающуюся при 700°С на bao и o 2 . Нагреванием перекиси с кислородом под высоким давлением получена высшая перекись bao 4 - вещество желтого цвета. разлагающееся при 50-60°С. С галогенами и серой Б. соединяется, образуя галогениды (например bacl 2) и сульфид bas, с водородом - гидрид bh 2 , бурно разлагающийся водой и кислотами. Из обычно применяемых солей Б. хорошо растворимы бария хлорид bacl 2 и др. галогениды, нитрат ba (no з) 2 , сульфид bas, хлорат ba (cl0 з) 2 , трудно растворимы - бария сульфат baso 4 , карбонат ВаСО з и хромат baco 4 .

Получение и применение Б . Основным сырьем для получения Б. и его соединений служит барит, который восстанавливают углем в пламенных печах: bas0 4 +4c=bas+4co. Образующийся растворимый bas перерабатывается на др. соли Б. Основной промышленный метод получения металлического Б. - термическое восстановление его окиси порошком алюминия: 4bao+2al=ЗВа+ВаО. al 2 o з.

Смесь нагревают при 1100-1200°С в вакууме (100 мн/м 2 , 10 -3 мм рт. ст. ) . Б. улетучивается, осаждаясь на холодных частях аппаратуры. Процесс ведут в электровакуумных аппаратах периодического действия, позволяющих последовательно проводить восстановление, дистилляцию, конденсацию и отливку металла, получая за один технологический цикл слиток Б. Двойной перегонкой в вакууме при 900°С металл очищают до содержания в нём примесей менее 1-10 -4 %.

Практическое применение металлического Б. невелико. Оно ограничено также и тем, что манипуляции с чистым Б. затруднительны. Обычно Б. или помещают в защитную оболочку из др. металла, или сплавляют с каким-либо металлом, придающим Б. стойкость. Иногда металлический Б. получают непосредственно в приборах, помещая в них таблетки из смеси окиси Б. и алюминия и проводя затем термическое восстановление в вакууме. Б., а также его сплавы с магнием и алюминием применяют в технике высокого вакуума в качестве поглотителя остаточных газов (геттера). В небольших количествах Б. применяют в металлургии меди и свинца для их раскисления, очистки от серы и газов. В некоторые антифрикционные материалы добавляют незначительное количество Б. Так, добавка Б. к свинцу заметно увеличивает твёрдость сплава, применяемого для типографских шрифтов. Сплавы Б. с никелем применяют при изготовлении электродов запальных свечей двигателей и в радиолампах.

Широко применяются соединения Б. Перекись bao 2 служит для получения перекиси водорода, для отбеливания шёлка и растительных волокон, как дезинфицирующее средство и как один из компонентов запальных смесей в алюминотермии. Сульфидом bas удаляют волосяной покров со шкур. Перхлорат ba (clo 4) 2 - один из лучших осушителей. Нитрат Ва (nО 3) 2 используют в пиротехнике. Окрашенные соли Б. - хромат ВаСгО4 (жёлтый) и манганат bamno 4 (зелёный) - хорошие пигменты при изготовлении красок. Платиноцианатом Б. ba покрывают экраны при работе с рентгеновским и радиоактивным излучением (в кристаллах этой соли под действием излучений возбуждается яркая жёлто-зелёная флуоресценция). Титанат Б. batio 3 - один из наиболее важных сегнетоэлектриков. Поскольку Б. хорошо поглощает рентгеновские лучи и гамма-излучение, его вводят в состав защитных материалов в рентгеновских установках и ядерных реакторах. Соединения Б. являются инертными носителями при извлечении радия из урановых руд. Нерастворимый сульфат Б. нетоксичен и применяется как контрастная масса при рентгенологическом исследовании желудочно-кишечного тракта. Карбонат Б. используется для уничтожения грызунов.

Лит.: Дымчишин Д. А., Производство бариевых солей, М.- Л., 1938; Беляев А. И., Металлургия легких металлов, 4 изд., М., 1954; Баранова М. К., Барий. (Обзор литературы), М., 1962.

Ю. И. Романьков.

Б. в организме. Б. присутствует во всех органах растений; его содержание в золе растения зависит от количества Б. в почве и колеблется от 0,06-0,2 до 3% (на месторождениях барита). Коэффициент накопления Б. (Б. в золе/Б. в почве) у травянистых растений равен 0,2-6, у древесных 1-30. Концентрация Б. больше в корнях и ветвях, меньше - в листьях; она увеличивается по мере старения побегов. Для животных Б. (его растворимые соли) ядовит, поэтому травы, содержащие много Б. (до 2-30% в золе), вызывают у травоядных отравление. Б. отлагается в костях и в небольших количествах в др. органах животных. Доза 0,2-0,5 г хлористого Б. вызывает у человека острое отравление, 0,8-0,9 г - смерть. Предельно допустимая концентрация Б. в воде, используемой с бытовыми целями, 4,0 г/м 3 (4,0 мг/л ) .

Металлический барий - мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Название его происходит от древнегреческого слова, означающего «тяжелый» (из-за высокой его соединений).

Как был открыт барий

В виде оксида барий открыли Карл Шееле и Юхан Ган в 1774 г. В 1808 году Гемфри Дэви впервые выделил барий в чистом виде в ходе электролиза влажного гидроксида бария с ртутным катодом. Образующуюся в этом процессе амальгаму бария Дэви нагревал, а после испарения ртути получал чистый металлический барий.

Распространенность бария в природе

Этот элемент обладает высокой химической активностью и не встречается в природе в чистом виде. Он содержится главным образом в минералах барит (Ba­SO₄) и витерит (Ba­CO₃). Одно из соединений бария – его сульфид, BaS – стал известен как «болонский » после экспериментов итальянского алхимика Винченцо Касциароло (Vin­cen­zo Cas­cia­ro­lo). Прокаливая барит, он обнаружил, что образуется вещество, которое в темноте. Пробыв днем под солнцем, оно продолжало светиться всю ночь.

Где применяется барий и его соединения

В чистом виде барий применяется в качестве геттера (газопоглотителя) в электронных приборах с высоким вакуумом и добавляется в жидкометаллические теплоносители. Соединения бария применяются при изготовлении керамических конденсаторов, пьезоэлектрических микрофонов и пьезокерамических излучателей (титанат бария). Также соединения бария используются в оптике (монокристаллы фторида бария), в атомно-водородной энергетике для получения водорода и кислорода по циклу Ок-Риджа (хромат бария), в ядерной энергетике для покрытия урановых стержней (оксид бария в составе специального сорта стекла) и в различных химических источниках . Пероксид бария вместе с оксидами меди и редкоземельных металлов используется для создания сверхпроводящей керамики, работающей при температуре выше 77.4 K. Нитрат и хлорат бария придают фейерверкам зеленый цвет.

Все водорастворимые соединения бария токсичны и вызывают серьезные проблемы с желудочно-кишечным трактом, паралич мышц и сердца. Однако нерастворимый в воде сульфат бария нашел применение в медицине. «Баритовую кашу» (суспензию сульфата бария) дают пациентам для рентгенографического исследования органов пищеварения. Барий хорошо поглощает рентгеновское излучение. Это свойство пробовали применять производители «Lego», добавляя сульфат бария в пластмассу для деталей конструктора. Если ребенок проглатывал деталь, на рентгене можно было легко ее обнаружить пищеварительном тракте. К сожалению, пластмасса теряла прочность, а промышленный сульфат бария был недостаточно чист и обладал токсичностью, поэтому от этой идеи отказались.