Алгоритмы. Разработка алгоритма решения задачи. Блок схемы онлайн: как структурно представить информацию

Схема это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части . Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД) , частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» . Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985 .

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

Терминатор начала и конца работы функции

Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.

Операции ввода и вывода данных

В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.

Выполнение операций над данными

В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.

Блок, иллюстрирующий ветвление алгоритма

Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.

Вызов внешней процедуры

Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.

Начало и конец цикла

Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).

Подготовка данных

Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.

Соединитель

В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.

Комментарий

Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.


Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того .

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком , как и сортировка вставками , использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.


Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием ), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap ). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).


Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива , поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort , … .

В наше время с построением различного рода диаграмм и блок-схем сталкивается каждый дизайнер и программист. Когда информационные технологии еще не занимали такую важную часть нашей жизни, рисование этих конструкций приходилось производить на листе бумаги. К счастью, теперь все эти действия выполняются с помощью автоматизированного программного обеспечения, устанавливаемого на компьютер пользователя.

В интернете довольно легко найти огромное количество редакторов, предоставляющих возможность создания, редактирования и экспорта алгоритмической и деловой графики. Однако не всегда легко разобраться в том, какое именно приложение необходимо в конкретном случае.

В силу своей многофункциональности, продукт от компании Microsoft может пригодится как профессионалам, не один год занимающимся построением различных конструкций, так и обычным пользователям, которым необходимо нарисовать простую схему.

Как и любая другая программа из серии Microsoft Office, Visio имеет все необходимые для комфортной работы инструменты: создание, редактирование, соединение и изменение дополнительных свойств фигур. Реализован и специальный анализ уже построенной системы.

Dia

На втором месте в данном списке вполне справедливо располагается Dia, в которой сосредоточены все необходимые современному пользователю функции для построения схем. К тому же, редактор распространяется на бесплатной основе, что упрощает его использование в образовательных целях.

Огромная стандартная библиотека форм и связей, а также уникальные возможности, не предлагаемые современными аналогами — это ждет пользователя при обращении к Диа.

Flying Logic

Если вы ищете софт, с помощью которого можно быстро и легко построить необходимую схему, то программа Flying Logic — это именно то, что вам нужно. Здесь отсутствует громоздкий сложный интерфейс и огромное количество визуальных настроек диаграмм. Один клик — добавление нового объекта, второй — создание объединения с другими блоками. Еще можно объединять элементы схемы в группы.

В отличие от своих аналогов, данный редактор не располагает большим количеством различных форм и связей. Плюс ко всему, существует возможность отображения дополнительной информации на блоках, о чем подробно рассказано в обзоре на нашем сайте.

BreezeTree Software FlowBreeze

FlowBreeze — это не отдельная программа, а подключаемый к самостоятельный модуль, в разы облегчающий разработку диаграмм, блок-схем и прочих инфографик.

Безусловно, ФлоуБриз — это ПО, по большей части предназначенное для профессиональных дизайнеров и им подобных, которые разбираются во всех тонкостях функционала и понимают, за что отдают деньги. Среднестатистическим пользователям будет крайне сложно разобраться в редакторе, особенно учитывая интерфейс на английском языке.

Edraw MAX

Как и предыдущий редактор, Edraw MAX — это продукт для продвинутых пользователей, профессионально занимающихся подобной деятельностью. Однако, в отличие от FlowBreeze, он является самостоятельным программным обеспечением с несчетным количеством возможностей.

По стилю интерфейса и работы Edraw очень напоминает . Не зря его называют главным конкурентом последнего.

AFCE Редактор Блок-Схем (Algorithm Flowcharts Editor)

Данный редактор является одним из наименее распространенных среди представленных в данной статье. Вызвано это тем, что его разработчик — обычный преподаватель из России — полностью забросил разработку. Но его продукт все-равно пользуется некоторым спросом на сегодняшний день, поскольку отлично подходит любому школьнику или студенту, который изучает основы программирования.

Вдобавок к этому программа является полностью бесплатной, а ее интерфейс выполнен исключительно на русском языке.

FCEditor

Концепция программы FCEditor кардинально отличается от других представленных в данной статье. Во-первых, работа происходит исключительно с алгоритмическими блок-схемами, которые активно используются в программировании.

Во-вторых, ФСЭдитор самостоятельно, в автоматическом режиме строит все конструкции. Все что необходимо пользователю — это импортировать готовый исходный код на одном из доступных языков программирования, после чего экспортировать конвертированный в схему код.

BlockShem

В программе BlockShem, к сожалению, представлено намного меньше функций и удобств для пользователей. Полностью отсутствует автоматизация процесса в любом виде. В БлокСхеме пользователь должен вручную рисовать фигуры, а после объединять их. Данный редактор скорее относится к графическим, нежели к объектным, предназначенным для создания схем.

Библиотека фигур, к сожалению, в этой программе крайне бедна.

Как видите, существует большой выбор софта, предназначенного для построения блок-схем. Причем различаются приложения не только количеством функций — некоторые из них предполагают фундаментально другой принцип работы, отличимый от аналогов. Поэтому сложно посоветовать, каким редактором пользоваться — каждый может подобрать именно тот продукт, который ему необходим.

Строго говоря, термина «блок-схема» не существует. Вместо этой фразы правильно говорить «схема алгоритма», но сейчас не об этом. Моя статья о том, можно ли быстро и удобно рисовать алгоритмы, при этом еще чтобы это было бесплатно. Было бы здорово, если бы существовал бесплатный аналог онлайн-редактора Gliffy, и он на наше счастье есть.

Алгоритмы в Pencil рисовать очень легко. Для этого имеется выделенная библиотека примитивов со стандартными блоками и соединителями. Выглядит это примерно так:

При рисовании блоков они привязываются автоматически к сетке, что позволяет легко их выравнивать. Нарисовав один блок, другой блок можно «примагнитить» к нему снизу или сбоку, всё при этом будет ровно.

Если навести на блок и кликнуть мышью один раз, будет режим изменения размера блока и перетаскивания. Если кликнуть второй раз, блок можно будет вращать (появятся круглые красные точки по краям).

Доступны основные базовые возможности, практически как в Visio: блоки можно объединять в группы, перетаскивать и копировать, располагать выше или ниже по слоям, магнитить коннекторы к центру и т.д.

Недостатки тоже присутствуют, например, не очень корректная работа углового соединителя: он иногда трансформируется в невообразимый зигзаг при попытке его выделить и перетащить. Но эти недостатки столь несущественны, что не помешали занять программе Pencil достойное место в моей коллекции повседневных инструментов разработчика.

Блок-схемой будем называть такое графическое представление алгоритма, когда отдельные действия (или команды) представляются в виде геометрических фигур – блоков . Внутри блоков указывается информация о действиях, подлежащих выполнению. Связь между блоками изображают с помощью линий, называемых линиями связи , обозначающих передачу управления.

Существует Государственный стандарт, определяющий правила создания блок-схем. Конфигурация блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19.701-90 "Схемы алгоритмов и программ". В табл. 2.1 приведены обозначения некоторых элементов, которых будет вполне достаточно для изображения алгоритмов при выполнении студенческих работ.

Правила составления блок-схем:

    Каждая блок-схема должна иметь блок «Начало » и один блок «Конец ».

    «Начало » должно быть соединено с блоком «Конец » линиями потока по каждой из имеющихся на блок-схеме ветвей.

    В блок-схеме не должно быть блоков, кроме блока «Конец », из которых не выходит линия потока, равно как и блоков, из которых управление передается «в никуда».

    Блоки должны быть пронумерованы. Нумерация блоков осуществляется сверху вниз и слева направо, номер блока ставится вверху слева, в разрыве его начертания.

    Блоки связываются между собой линиями потока, определяющими последовательность выполнения блоков. Линии потоков должны идти параллельно границам листа. Если линии идут справа налево или снизу вверх , то стрелки в конце линии обязательны , в противном случае их можно не ставить.

    По отношению к блокам линии могут быть входящими и выходящими . Одна и та же линия потока является выходящей для одного блока и входящей для другого.

    От блока «Начало » в отличие от всех остальных блоков линия потока только выходит, так как этот блок – первый в блок-схеме.

    Блок «Конец » имеет только вход, так как это последний блок в блок-схеме.

    Для простоты чтения желательно, чтобы линия потока входила в блок «Процесс» сверху, а выходила снизу.

    Чтобы не загромождать блок-схему сложными пересекающимися линиями, линии потока можно разрывать. При этом в месте разрыва ставятся соединители , внутри которых указываются номера соединяемых блоков. В блок-схеме не должно быть разрывов, не помеченных соединителями.

    Чтобы не загромождать блок, можно информацию о данных, об обозначениях переменных и т.п. размещать в комментариях к блоку.

Название блока

Обозначение блока

Назначение блока

Терминатор

Начало/Конец программы или подпрограммы

Обработка данных (вычислительное действие или последовательность вычислительных действий)

Ветвление, выбор, проверка условия. В блоке указывается условие или вопрос, который определяет дальнейшее направление выполнения алгоритма

Подготовка

Заголовок счетного цикла

Предопределенный процесс

Обращение к процедуре

Ввод/Вывод данных


Типы алгоритмов

Тип алгоритма определяется характером решаемой в соответствии с его командами задачи. Различают три типа алгоритмов: линейные, разветвляющиеся, циклические.

Линейный алгоритм состоит из упорядоченной последовательности действий, не зависящей от значений исходных данных, при этом каждая команда выполняется только один раз строго после той команды, которая ей предшествует.

Таким, например, является алгоритм вычисления по простейшим безальтернативным формулам, не имеющий ограничений на значения входящих в эти формулы переменных. Как правило, линейные процессы являются составной частью более сложного алгоритма.

Разветвляющимися называются алгоритмы, в которых в зависимости от значения какого-то выражения или от выполнения некоторого логического условия дальнейшие действия могут производиться по одному из нескольких направлений.

Каждое из возможных направлений дальнейших действий называется ветвью .

В блок-схемах разветвление реализуется специальным блоком «Решение» . Этот блок предусматривает возможность двух выходов. В самом блоке «Решение» записывается логическое условие, от выполнения которого зависят дальнейшие действия.

Различают несколько видов разветвляющихся алгоритмов.

1. «Обход» – такое разветвление, когда одна из ветвей не содержит ни одного оператора, т.е. как бы обходит несколько действий другой ветви.

2. «Разветвление» – такой тип разветвления, когда в каждой из ветвей содержится некоторый набор действий.

3. «Множественный выбор» – особый тип разветвления, когда каждая из нескольких ветвей содержит некоторый набор действий. Выбор направления зависит от значения некоторого выражения.

Циклические алгоритмы применяются в тех случаях, когда требуется реализовать многократно повторяющиеся однотипные вычисления. Цикл – это последовательность действий, которая может выполняться многократно, т.е. более одного раза.

Различают:

      циклы с известным числом повторений (или со счетчиком);

      циклы с неизвестным числом повторений (циклы с предусловием и циклы с постусловием).

В любом цикле должна быть переменная, которая управляет выходом из цикла, т.е. определяет число повторений цикла.

Последовательность действий, которая должна выполняться на каждом шаге цикла (т.е. при каждом повторении цикла), называется телом цикла или рабочей частью цикла .

31.01.2019 Learnpascal

Итак, опустив долгие и нудные восхваления Паскаля, которые так любят публиковать в своих статьях редакторы многих сайтов, приступим непосредственно к самому основному – к программированию.

В школах, как правило, изучение Паскаля начинают с решения простейших задач путем составления различных алгоритмов или блок-схем, которое многие так часто игнорируют, считая никому не нужной ерундой. А зря. Я, как и любой другой человек, хоть немного соображающий в программировании (не важно где – в Паскале, Си, Дельфи), могу уверить Вас – умение правильно и быстро составлять схемы является фундаментом, основой программирования.

Блок-схема — графическое представление алгоритма. Она состоит из функциональных блоков, которые выполняют различные назначения (ввод/вывод, начало/конец, вызов функции и т.д.).

Существует несколько основных видов блоков, которые нетрудно запомнить:

Сегодняшний урок я решила посвятить не только изучению блок-схем, но также и изучению линейных алгоритмов. Как Вы помните, линейный алгоритм — наипростейший вид алгоритма. Его главная особенность в том, что он не содержит никаких особенностей. Как раз это и делает работу с ним простой и приятной.

Данная задача не должна представлять особой трудности, так как построена она на хорошо известных всем нам формулах расчета площади и периметра прямоугольника, поэтому зацикливаться на выведении этих формул мы не будем.

Составим алгоритм решения подобных задач:

1) Прочитать задачу.
2) Выписать известные и неизвестные нам переменные в «дано». (В задаче №1 к известным переменным относятся стороны: a, b ;к неизвестным — площадь S и периметр P)
3) Вспомнить либо составить необходимые формулы. (У нас: S=a*b; P=2*(a+b))
4) Составить блок-схему.
5) Записать решение на языке программирования Pascal.

Запишем условие в более кратком виде.

Найти: S, P

Решение задачи №1

Структура программы, решающей данную задачу, тоже проста:

  • 1) Описание переменных;
  • 2) Ввод значений сторон прямоугольника;
  • 3) Расчет площади прямоугольника;
  • 4) Расчет периметра прямоугольника;
  • 5) Вывод значений площади и периметра;
  • 6) Конец.

А вот и решение:

Program Rectangle; Var a, b, S, P: integer; Begin write("Введите стороны прямоугольника!"); readln(a, b); S:=a*b; P:=2*(a+b); writeln("Площадь прямоугольника: ", S); write("Периметр прямоугольника: ", P); End.

Задача №2: Скорость первого автомобиля — V1 км/ч, второго – V2 км/ч, расстояние между ними S км. Какое расстояние будет между ними через T часов, если автомобили движутся в разные стороны? Значения V1, V2, T и S задаются с клавиатуры.

Решение осуществляем, опять же, следуя алгоритму. Прочитав текст, мы переходим к следующему пункту. Как и во всех физических или математических задачах, это запись условий задачи:

Дано: V1, V2, S, Т
Найти: S1

Далее идет самая главная и в то же время самая интересная часть нашего решения – составление нужных нам формул. Как правило, на начальных стадиях обучения все необходимые формулы хорошо нам известны и взяты из других технических дисциплин (например, на нахождение площади различных фигур, на нахождение скорости, расстояния и т.п.).

Формула, используемая для решения нашей задачи, выглядит следующим образом:

Следующий пункт алгоритма – блок-схема:

Решение задачи №2.

А также решение, записанное в Pascal:

Program Rasstoyanie; Var V1, V2, S, T, S1: integer; {Ввод } begin write("Введите скорость первого автомобиля: "); readln(V1); write("Введите скорость второго автомобиля: "); readln(V2); write("Введите время: "); readln(T); write("Введите расстояние между автомобилями: "); readln(S); S1:=(V1+V2)*T+S; writeln("Через ", t,"ч. расстояние ", S1," км."); End.

Вам может показаться, что две эти программы правильны, но это не так. Ведь сторона треугольника может быть 4.5, а не 4, а скорость машины не обязательно круглое число! А Integer — это только целые числа. Поэтому при попытке написать во второй программе другие числа выскакивает ошибка:


Обратите внимание в Паскале, как и в любом другом языке программирования десятичная дробь вводится с точкой, а не с запятой!

Чтобы решить эту проблему вам надо вспомнить какой тип в Pascal отвечает за нецелые числа. В мы рассматривали основные типы. Итак, это вещественный тип — Real. Вот, как выглядит исправленная программа:

Как видите, эта статья полезна для прочтения как новичкам, так и уже более опытными пользователям Pascal, так как составление блок-схем не только очень простое и быстрое, но и весьма увлекательное занятие.