Основные параметры ибп. Источники бесперебойного питания: попытка выработки комплексной методики тестирования. Устройства хранения электроэнергии

ИБП расшифровывается как "источник бесперебойного питания". Аббревиатура на английском - UPS (Uninterruptible Power Supply) , поэтому распространены также названия УПС, ЮПС, упсник.

Основная функция источника бесперебойного питания - обеспечить подачу электроэнергии на подключенную к нему технику на время отключений в основной сети. Но, в зависимости от типа оборудования, параметры такого автономного питания могут требоваться кардинально разные. Соответственно, рынок ИБП предлагает разные типы устройств, которые отличаются массой параметров:

  • принципом работы: оффлайновые, линейно-интерактивные, онлайновые;
  • типом автоматической регулировки напряжения;
  • качеством фильтрации помех сети;
  • емкостью (количество ампер-часов, или другими словами - на какое время автономной работы его хватит);
  • временем переключения на батареи при отключении электроэнергии;
  • возможностью подключения дополнительных внешних батарей;
  • различными дополнительными функциями (фильтрующие розетки, розетки для телефонного и сетевого кабеля, LCD-дисплей, синхронизация с ПК) и т. д.

Как выбрать ИБП при таком многообразии моделей? Как понять, чем они отличаются? В этой статье мы рассмотрим основные типы источников бесперебойного питания, их отличия, и какими дополнительными функциями производители оснащают ИБП. В следующей - как подобрать UPS в зависимости от особенностей вашего оборудования, как рассчитать его необходимую мощность и т. д.

Три основные типа ИБП

Off-line (Back-UPS, резервный, Standby) источник бесперебойного питания

Пример резервного ИБП: модель .

Принцип действия бесперебойника такого типа очень простой:

Пока в сети есть электроэнергия в пределах установленных значений, ИБП подает на подключенные устройства напряжение напрямую от сети, одновременно подзаряжая батарею. Питание, проходящее через UPS, при этом не регулируется, фильтрация импульсов и помех происходит на самом простом уровне, с помощью пассивных фильтров. Форма сигнала соответствует сигналу сети, т. е. синусоиде.

Как только напряжение в сети пропадает, ИБП переходит на питание от батарей. Инвертор, преобразующий постоянный ток от аккумулятора в переменный ток на выходе, в UPS этого типа установлен один из самых простых, поэтому форма сигнала не соответствует правильной синусоиде. Максимум, что предпринимают производители - несколько приближают ее к синусоиде, делая ступенчатой.

На автономное питание off-line УПС переходит также в том случае, если уровень напряжения в сети падает ниже или поднимается выше пороговых значений, они могут быть разными в зависимости от марки бесперебойника.

Время переключения на аккумуляторы в различных моделях составляет от 5 до 20 мс. Это сравнительно много, и для некоторых моделей оборудования такая долгая задержка может неблагоприятно сказаться на работе. Длительное срабатывание реле связано с тем, что устройству необходимо, чтобы в момент включения автономного питания фазы напряжений сети и батарей совпадали, а поскольку они не синхронизированы, на это уходит некоторое время.


Схема работы источника бесперебойного питания резервного типа.

Плюсы Standby UPS:

      • недорогая цена,
      • высокий КПД,
      • бесшумная работа.

Недостатки:

      • долгое переключение на работу от батареи (от 5 до 20 мс);
      • форма выходного сигнала - не синусоида;
      • фильтрация помех, шумов и импульсов на линии довольно грубая;
      • нет регулировки напряжения и частоты при работе от сети.

Линейно-интерактивные ИБП

Пример линейно-интерактивного ИБП: модель

Этот тип источников бесперебойного питания покупатели выбирают чаще всего, так как он оптимально сочетает функциональность и цену.

В принципиальную схему работы линейно-интерактивных UPS включен AVR - модуль автоматической регулировки входящего напряжения сети. То есть, в отличие от UPS резервного типа, он не просто пропускает сквозь себя питание, но и стабилизирует его, правда не плавно, а ступенчато.

При работе от сети при нормальном уровне напряжения линейно-интерактивный источник бесперебойного питания пропускает входящий сигнал через пассивные фильтры помех и шумов, одновременно заряжается батарея.

При повышении или понижении напряжения в сети, линейно-интерактивный ИБП производит его ступенчатую корректировку. При достижении напряжением определенного порога, AVR понижает или понижает его на фиксированную величину (или процент). Таких порогов-ступеней в схеме работы AVR может быть прописано несколько, также для работы с пониженным и повышенным уровнем может быть предназначено разное количество ступеней корректировки (например, 2 - для повышения, и 1 - для понижения).

Если напряжение в сети падает или поднимается до значений, которые лежат вне доступного входного диапазона бесперебойника, устройство переходит на работу от батарей, так же как и в случае полного отключения электроэнергии. Эти минимумы и максимумы могут различаться в зависимости от загруженности ИБП. К примеру, если UPS загружен на 70%, а вольтметр показывает 160В в сети, бесперебойник переключается на аккумуляторы. А при загрузке на 30% и напряжении в 150В он все еще производит регулировку при помощи AVR-трансформатора.

Часть линейно-интерактивных моделей ничем не отличаются по форме выходного сигнала от бесперебойников резервного типа: у них ступенчатая синусоида. Некоторые производители, особенно с ростом спроса ИБП для котлов, оснащают свои бесперебойники инверторами, выдающими правильную синусоиду.

Время переключения на работу от аккумуляторов в линейно-интерактивных ИБП с чистой синусоидой меньше, чем у его резервных собратьев. Причина в том, в УПС-ах этого типа совпадают формы кривой напряжения (и от сети, и от батареи это синусоида), что ускоряет синхронизацию фаз и, соответственно, запуска автономного питания.

Плюсы line-interactive ИБП:

      • разумная цена,
      • бесшумная работа,
      • автоматическая регулировка входящего напряжения,
      • в некоторых моделях - чистая синусоида на выходе,
      • время переключения меньше, чем в резервных (в среднем 4-8 мс, в некоторых моделях 2-4 мс).

Недостатки:

      • отсутствует регулировка частоты,
      • недостаточно полная фильтрация помех, шумов и импульсов сети,
      • регулировка напряжения не плавная, а ступенчатая,
      • КПД ниже, чем в off-line источнике бесперебойного питания.

ИБП двойного преобразования (on-line)

Пример ИБП с двойным преобразованием: модель .

Это самый дорогой, но и самый лучший вид ИБП. Он оптимально подходит для дорогого капризного оборудования, для которого важно не только постоянное напряжение, но и частота, а также эффективная фильтрация шумов, сигнал в форме чистой синусоиды и отсутствие задержек при переключении на работу от батарей.

Фактически, такой источник бесперебойного питания работает постоянно, стабилизируя, фильтруя входящий сигнал, выравнивая частоту и форму выходного сигнала.

В режиме работы от сети, поступающее переменное напряжение стабилизируется и превращается в постоянное выпрямителем и распределяется между батареей (для подзарядки, если необходимо) и инвертором. Инвертор преобразует постоянный ток в переменный, выдавая на выходе сигнал в форме чистой синусоиды, правильной частоты, правильного напряжения. Помехи и шумы полностью отсутствуют - их просто не остается после двойного преобразования.

Такое постоянное "включение" бесперебойника в сеть дает одно из его весомых преимуществ: мгновенное переключение на работу от батарей . Собственно, это даже сложно назвать "переключением", так как питание проходит через выпрямитель, батарею (во время зарядки) и инвертор постоянно. В момент падения напряжения в сети ниже пороговых значений или полного отключения электроэнергии инвертор просто начинает забирать часть энергии от батареи, а не от выпрямителя. Это происходит мгновенно.

ИБП с двойным преобразованием обычно имеют еще один режим работы: байпас. Это резервная линия, которая идет напрямую от входа к выходу UPS, в обход выпрямителя, батареи и инвертора. Она позволяет в критические для ИБП моменты: перегрузка (например, стартовыми токами), выход из строя инвертора и другие - пустить электроэнергию к подключенным устройствам напрямую, избежав выхода из строя элементов устройства.

Постоянная работа ИБП имеет определенный недостаток: повышенное теплоотделение, которое требует эффективного охлаждения. Поэтому UPS online чаще всего оснащены вентиляторами, что делает их эксплуатацию в жилых помещениях не такой комфортной, как бесшумных бесперебойников других типов.

Плюсы онлайн ИБП:

      • постоянная стабилизация напряжения,
      • постоянная стабилизация частоты,
      • чистая синусоида на выходе,
      • эффективная фильтрация шумов, импульсов и помех,
      • мгновенное переключение на батареи.

Недостатки:

      • высокая цена,
      • повышенный уровень шума,
      • наиболее низкий КПД среди всех типов ИБП.

Выбирая бесперебойник, нужно учитывать, что существуют и исключения. Некоторые линейно-интерактивные ИБП могут стоить дороже, чем онлайн-модели другого производителя, время переключения на работу от батарей в резервном UPS может быть не больше, а даже меньше, чем в каком-нибудь линейно-интерактивном UPS и т. д. Поэтому в любом случае необходимо читать характеристики конкретной модели.

Дополнительный функционал ИБП

Помимо определения типа источника бесперебойного питания, который вам нужен, при выборе ИБП также стоит обратить внимание - какой функционал в него в ключен. UPS может иметь различные дополнительные функции и конструктивные особенности:

Синхронизация с ПК . Эта функция присутствует в не самых дешевых моделях, однако она очень удобна. С помощью специального программного обеспечения ИБП передает данные в реальном режиме на компьютер о состоянии электролинии, уровне заряда батарей. Помимо чисто информационной составляющей, есть также такие возможности, как например, автономное выключение компьютера с сохранением данных во всех приложениях при отключении электроэнергии.

Холодный старт . Источник бесперебойного питания, оснащенный такой функцией, можно включить при отсутствии электроэнергии в сети. К примеру, погас свет, вы сохранили документы, выключили компьютер и UPS, но спустя некоторое время появилась срочная необходимость скопировать документ на флешку. ИБП с поддержкой холодного старта можно включить, даже если электроэнергии в сети все еще нет, и сделать работу.

Раньше разъемы для подключения устройств в бесперебойнике выглядели, в основном, так:

Этот разъем стандарта IEC 320 отлично подходит для подключения различной компьютерной техники. Однако оборудование с обычным шнуром питания, тот же WiFi роутер, в него не подключишь. Для этих целей можно использовать сетевой фильтр с аналогичным разъемом, который подсоединяется к ИБП, а уже в него включать различное оборудование. Но это не всегда удобно.

Поэтому сейчас многие модели стали просто дополнять розетками типа Schuko (у нас их часто называют евророзетками), чтобы технику можно было включить напрямую:

Розетки для фильтрации помех. ИБП может быть оснащен розеткой или несколькими для чувствительного оборудования, которые не обеспечивают поддержку питания во время отключения электроэнергии, но защищают подключенное оборудование от помех электросети.

Розетки для телефонной линии, витой пары . Высоковольтные импульсы могут передаваться не только непосредственно по электрическому силовому кабелю, но и в случае различных аварий и поломок - и по телефонному кабелю, и по витой паре. Для защиты телефонного, сетевого и компьютерного оборудования некоторые производители предусматривают специальные разъемы, (вход/выход), куда можно подсоединить телефонную или интернет-линию.

Продолжение - в следующей статье.


сайт

В статье рассмотрены виды ИБП, принципы работы ИБП, а также приведены реальные осциллограммы напряжений на выходе.

Для начала – немного общей терминологии. Источники бесперебойного питания (сокращенно – ИБП) у нас так же называют UPS, от английского сокращения Uninterruptable Power Supply (беспрерывный источник питания). Поэтому говорят и УПС (UPS) и ИБП, кому как удобнее. Я в статье буду называть и так, и эдак.

Зачем нужен UPS (ИБП)

Принцип работы ИБП раскрывается в названии – это такой источник, на выходе которого напряжение есть всегда . Но мы здесь собрались технари-реалисты, и понимаем, что ничего вечного нет, поэтому ниже разберемся в принципе действия.

ИБП в основном используются там, где пропадание электропитания может вызвать негативные последствия. Например, питание компьютеров и серверов, питание устройств связи и распределения сигналов (роутеры), питание устройств, автоматическая перезагрузка (перезапуск) которых без участия человека невозможна.

Как мой читатель доработал ИБП для стратегически важной системы (2 сервера, и т.д.). Кроме того, усовершенствовал схему, и добавил возможность использования обычного автомобильного аккумулятора.

Для бытовых вещей это прежде всего компьютеры и системы отопления.

Следует понимать, что ИБП выбираются на время работы нагрузки 10-15 мин, редко до получаса. Предполагается, что за это время питание появится, либо человек (оператор) предпримет необходимые действия (сохранит данные, позвонит в энергослужбу предприятия, завершит технологический процесс).

ИБП нельзя рассматривать в качестве резервного источника питания. Он является лишь аварийным источником, и в лучшем случае используется очень редко, в общей сложности не более 10 минут в год (несколько раз, на время не более минуты). Если это время больше, то следует задуматься о повышении качества электропитания.

Резервным источником питания можно считать такие источники, которые полностью могут заменить основное питание на длительное время, от нескольких часов до нескольких суток. Это может быть другая линия (см.статью про ), ветряной генератор. Теоретически, для этих целей может служить и ИБП, но для этого нужны аккумуляторы огромной ёмкости, что значительно повлияет на цену такой системы.

Виды источников бесперебойного питания

Виды (типы) ИБП имеют множество названий, но их всё равно ровно три. Разберёмся.

Итак, три основных вида ИБП:

Back UPS

Другие равнозначные названия – Off-line UPS, Standby UPS, ИБП резервного типа. Самые распространенные УПС, используются для большинства видов бытовой и компьютерной техники.

Back просто переключает нагрузку на питание от батарей при выходе входного напряжения за пределы. Нижний предел у разных моделей – около 180В, верхний – около 250В. Переходы на батарею и обратно – с гистерезисом. То есть, например, при понижении переход на батарею состоится при 180 В и менее, а обратно – при 185 и более. Тот же принцип действует у всех типов ИБП.

Чем-то напоминает , которое отключает нагрузку, а Back UPS не отключает, а переключает на аккумулятор, что позволяет ей некоторое время поработать.

Smart UPS

Другие названия – Line-Interactive, ИБП интерактивного типа. Недалеко ушли по принципу действия от Back.

Smart UPS действуют умнее, как следует из названия. Они ещё дополнительно переключают внутренний автотрансформатор, в некотором смысле стабилизируя входное напряжение. И только в крайнем случае переходят на батарею.

Таким образом, норма напряжения на выходе поддерживается при бОльших отклонениях на входе (150…300В). Автотрансформатор имеет несколько ступеней переключения, поэтому Умный УПС до последнего переключает выводы автотрансформатора, включая аккумулятор лишь в последний момент. Это позволяет экономить батарею, включая её в работу лишь при полном пропадании питания.

Данное устройство напоминает со ступенчатым переключением обмоток автотрансформатора. С той лишь разницей, что при выходе за рабочие пределы стабилизатор будет бессилен, а наша “умница” введёт в работу аккумулятор, и питание не пропадёт.

Online UPS

Другие названия – онлайн, источник бесперебойного питания с двойным преобразованием, инверторный. Совершенно другой принцип действия, для любителей чистого синуса. Энергия со входа преобразуется в постоянное напряжение, и поступает на инвертор, генерирующий чистый синус. И одновременно – поддерживает аккумулятор в 100% готовности. При необходимости инвертор продолжает работать так же, только питание на него поступает с аккумулятора.

Используется для аварийного питания техники, чувствительной к форме выходного напряжения – например, газовые котлы, сервера, профессиональная аудио-видео аппаратура и другое стратегически важное оборудование.

Минусов онлайн ИБП два – цена и КПД. КПД низкий, т.к. такой ИБП включен в работу постоянно, что следует из названия. В отличии от двух других типов.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Существуют разновидности онлайн УПС, в которых используется так называемый “сквозной ноль”, для правильной работы газовых электрокотлов. Это связано с тем, что такие котлы чувствительны к наличию реального нуля, для правильного розжига.

Исследование ИБП с помощью осциллографа

А теперь – самое интересное.

Напряжение на выходе Back UPS

Провёл исследование с использованием осциллографа Fluke 124. Осциллограммы (форма импульсов и колебаний на выходе ups) привожу и комментирую ниже.

Что видно по этой временной диаграмме? Период 20мс, частота 50Гц, амплитуда 315В. Стоит отметить, что фаза синуса и генерируемых импульсов совпадает, что хорошо. При пропадании сетевого напряжения ИБП мешкается 5-7 мс, и затем идут импульсы, которые называются “квази-синус”. Вот они:

Back UPS. Напряжение на выходе при питании от батарей.

Осциллограф померял RMS напряжение (среднеквадратическое), оно соответствует норме. Однако, когда я измерил это же напряжение мультиметром, я получил значение 155 В. Почему на выходе UPS низкое напряжение?

Дело в том, что мультиметр меряет только первую гармонику с частотой 50Гц. Для синуса всё гладко. Но если измерять напряжение таких вот импульсов, надо мерять именно RMS, среднеквадратическое, иначе не будут учтены следующие гармоники – 100, 150, 200 Гц. А они составляют значительную часть энергии, до 30%. Эту особенность знают производители UPS, и чтобы не заморачиваться (и не повышать цену на свои изделия), выдают на наши приборы такие импульсы с амплитудой около 370В.

Подробнее об измерении среднеквадратического несинусоидального напряжения – на видео:

Вот укрупненный график, где видно, что напряжение после переключения сначала повышается на пол секунды до 400В, а потом стабилизируется:

Back UPS. Выход, длительность 2 секунды

А вот как меняется форма напряжения на выходе Back-UPS в момент перехода с батарейного на сетевое питание:

Back UPS, – Напряжение на выходе ИБП при переходе с батареи на сеть. Форма импульсов на выходе ups

Тоже фаза не меняется, всё замечательно. Подключал на выход ИБП , переключал туда-сюда режимы питания – пускатель втянут надежно, никаких проблем.

В качестве испытуемого был ИБП APC Back-500-RS, параметры на фото ниже:

Параметры Back UPS – задняя панель

Напряжение на выходе Smart UPS

Теперь приведу для полноты картины осциллограммы напряжений на выходе Smart UPS. Испытаниям подвергался UPS Ippon Smart Power Pro 1000.

Smart UPS_Сеть-батарея

Время переключения также для всей современной аппаратуры несущественно – менее 7 мс.

Плавного изменения напряжения на входе я не делал, поскольку не было такой цели. Полагаю, что в данном случае Умный ИБП ведёт себя точно так же, как и релейный стабилизатор напряжения.

Данные исследования проведены в рамках проекта по промышленного холодильника.

Источник бесперебойного питания - компонент системы питания, который располагают между нагрузкой и питающей сетью. Главная функция ИБП состоит в обеспечении бесперебойного питания. Как устроен бесперебойник? Упрощённая схема ИБП включает аккумуляторные батареи и специальные элементы ИБП, компенсирующие возмущения в магистральной сети, а именно инвертор, выпрямитель, фильтр и в некоторых случаях . На сегодняшний день бесперебойники разделяют на три группы. У каждой из групп принцип работы ИБП имеет свои особенности.

Ключевым компонентом ИБП являются . Именно АКБ определяют сколько работает ИБП при отключении питания в сети. Как правило, в ИБП используются свинцово-кислотные аккумуляторы, имеющие следующие параметры: напряжение 12В и ёмкость 7Ач или 9Ач. АКБ относятся к типу герметичных и не обслуживаемых. В самых простых ИБП используется 1 аккумулятор, а в мощных бесперебойниках их количество может быть во много раз больше.

Резервные ИБП

Так называемые резервные ИБП являются самыми простыми и доступными. Принцип работы бесперебойника данного типа крайне прост: электропитание нагрузки осуществляется через сеть, если там имеется напряжение, в противном случае происходит переключение питания от АКБ. Зарядка АКБ осуществляется вовремя работы ИБП. Согласно статистике, эффективность таких ИБП при сбоях питания составляет 55-60%.

В большинстве случаев рассказать о том, как работает ИБП для компьютера, можно сославшись на принцип работы . Большинство домашних бесперебойников для компьютера выполнены по данной технологии. Уровень защиты, который они могут обеспечить является самым низким из всех существующих бесперебойников. Фильтрация сигнала осуществляется лишь частично. Зачастую такого уровня защиты для домашней техники вполне достаточно, так как качество питания в таких сетях несколько выше, чем в промышленных.

Резервные ИБП прекрасно работают в паре с компьютером, но при этом они абсолютно не совместимы для работы в паре с насосами, котлами отопления и другой подобной техникой, так как работа ИБП резервного типа не обеспечивает синусоидальную форму напряжения . Для компьютеров это не критично, так как в них используются коммутируемые источники питания. Этот факт позволяет таким устройствам выдержать небольшой провал питания за счёт наличия некоторого количества энергии в собственных конденсаторах. Время переключения офлайн с сети на АКБ колеблется от 2 до 15 миллисекунд. Схема работы ИБП включает в себя инвертор, который превращает постоянный ток АКБ в переменный. Следует заметить, что такие ИБП, как правило, являются маломощными.

Линейно-интерактивные ИБП

Устройство и работа источников бесперебойного питания интерактивного типа практически идентичен резервным ИБП. Исключением является способность стабилизации напряжения, которое осуществляется с помощью коммутирующего устройства. Преимущество стабилизации заключается в отсутствии необходимости на переключение питания при существенных отклонениях напряжения. Отклонения входного напряжения может достигать порядка 20% от нормального значения. Выходное напряжение бесперебойника при этом практически не колеблется. Эффективность защиты линейно-интерактивных ИБП составляет 85%.

В сравнении с резервными ИБП они обеспечивают более высокий уровень защиты, но уступают . Работа бесперебойника линейно-интерактивно типа может быть разделена на две группы. Устройства, относящие к первой группе, дают на выходе аппроксимированную синусоиду, то есть ступенчатую. Вторая группа выдаёт «чистую» синусоиду без каких-либо искажений. Последние в некоторых случаях могут стать заменой онлайн ИБП. Наличие чистой синусоиды на выходе позволяет применять их для защиты электродвигателей и котлов отопления.

Онлайн ИБП

Самые надёжные и высокотехнологичные ИБП относятся к типу онлайн. В них реализована технология двойного преобразования – самая прогрессивная из всех существующих. Степень защиты обеспечиваемый такими устройствами стремится к 100% независимо от того какие режимы работы ИБП активны: от сети или АКБ.

Как работает ИБП с онлайн топологией? На самом деле принцип работы вложен в само название. Ток на входе преобразуется на выпрямителе в постоянный, после чего инвертор преобразует его снова в переменный. Переменный ток на выходе обладает идеальными параметрами как по форме напряжения, так и по его значению. ИБП содержит в себе резервную линию - байпас , по которой осуществляется питание в случае неисправности какого-либо из узлов источника бесперебойного питания.

Принято говорить, что время переключения на АКБ равно нулю, но на самом деле аккумуляторные батареи всегда подключены к цепи. Поэтому данные ИБП и называются онлайн. Такое устройство бесперебойника позволяет защитить нагрузку от любых видов возмущений, которые могут встречаться в магистральной сети.

Применяются такие ИБП для защиты критической и очень чувствительной нагрузки. Все мощные ИБП выполняются по данной технологии. Несмотря на высокую мощность применяются дополнительные решения, которые позволяют увеличить автономность. Чаще всего конструкция позволяет ИБП - как пользоваться в связке с генератором, так и с внешними АКБ.

Однако, двойное преобразование имеет и свои недостатки. Устройство ИБП является довольно сложным, что влияет на его стоимость не лучшим образом. Наличие двойного преобразования понижает КПД, но на современных ИБП он довольно высокий. Реализованы специальные технологии энергосбережения, позволяющие довести коэффициент полезного действия до максимальных значений. Кроме того, процесс двойного преобразования сопровождается тепловыделением и шумами. Стоит признать, что удельный вес всех этих минусов является несравнимо малым в сравнении со всеми достоинствами, а в главную очередь с уровнем защиты.

Источники бесперебойного питания типа Off-Line

Источники бесперебойного питания типа Off-Line стандартом определяются как пассивные, резервного действия (UPS -PSO). В нормальном режиме функционирования штатным питанием нагрузки является отфильтрованное напряжение первичной сети при допустимых отклонениях входного напряжения и частоты. В случаи, когда параметры входного напряжения выходят за значения настроенных диапазонов, включается инвертор источника бесперебойного питания, обеспечивающий непрерывность питания нагрузки. Инвертор питается от аккумуляторов.

Это наиболее простые ИБП (рисунок 1), а значит, и самые дешевые. Источник бесперебойного питания состоит из двух параллельных ветвей:
. фильтр-нагрузка;
. выпрямитель-батарея-инвертор-нагрузка.



Рис.1. Схем источника бесперебойного питания Stand-By типа

При нормальных характеристиках сети, напряжение в нагрузку поступает через фильтр, фильтрующий всевозможные помехи. Это, обычно, фильтр-ограничитель (surge suppressor), хотя может быть и фильтр-стабилизатор (line conditioner) либо их сочетание, а также статический переключатель.

Одновременно через выпрямитель подзаряжаются и аккумуляторы аккумуляторной батареи. При пропадании, завышении либо понижении входного напряжения, питание нагрузки электронным переключателем переключается на батарейное через инвертор (инвертор преобразует постоянное напряжение в переменное). Переключатель обеспечивает время переключения от 2 до 15 мс. Отметим, что пропадание электроэнергии в ходе этого времени не оказывает сколь-нибудь заметного влияния на компьютерные системы, которые спокойно переносят отключение питания на 10-20мс. Учитывая, что почти у всей современной аппаратуры блоки питания импульсные, переключение совершается незаметно для пользователя. Источники бесперебойного питания такого типа могут поддержать работу персонального компьютера в ходе 5-10 мин.

Основные недостатки ИБП Off-Line

Главными недостатками ИБП off-line считают:
. плохая работа источников питания этого типа в сетях с низким качеством электрической сети: плохая защита от провалов напряжения (sags ), превышений допустимого значения напряжения, изменений частоты и формы входного напряжения;
. невозможность своевременного восстановления емкости аккумуляторов при частых переключениях на батарейное питание;
. несинусоидальное выходное напряжение при питании от аккумуляторной батареи.

Источники бесперебойного питания типа Line-Interactive

В источниках бесперебойного питания линейно-интерактивного типа (Line -Interactive, иногда Ferroresonant) сочетаются преимущества типа On-line с надежностью и эффективностью резервных (standby ). В источниках бесперебойного питания этого типа в отличие от технологии Off-line в прямую цепь включен ступенчатый автоматический регулятор напряжения (booster ), построенный на основе автотрансформатора (трансформатор с переключающимися обмотками). В некоторых моделях применяется сетевой стабилизатор напряжения.

Инвертор связан с нагрузкой. При работе он питает нагрузку параллельно стабилизированному (conditioned ) переменному напряжению сети. Нагрузка подключается полностью лишь в том случае, когда входное напряжение электросети пропадает.



Рис.2. Схем источника бесперебойного питания Line-Interactive типа

Из-за такого взаимодействия ( «interaction ») со входным сетевым напряжением данная архитектура и получила свое название. В определенном диапазоне изменения сетевого напряжения, выходное напряжение поддерживается в заданных границах за счет переключения обмоток трансформатора либо стабилизатором. Инвертор как правило работает при низком напряжении, регулирует выходное напряжение и подзарядку аккумуляторов до тех пор, пока не потребуется его включение для полного питания нагрузки при перебоях в электросети. Линейно-интерактивные источники бесперебойного питания нашли наиболее широкое применение в системах защиты компьютерных сетей.

Трансформатор, сделанный по специальной так называемой ferro-технологии, сглаживает скачки напряжения, при этом источник бесперебойного питания реже переключается на работу от аккумуляторной батареи, и следовательно повышается срок службы батареи. Обычно, эти источники бесперебойного питания оборудованы совершенными фильтрами, обеспечивающими защиту от помех различного происхождения. Типовое время переключения в режим питания от аккумуляторов или обратно составляет 2 мс.

Конструктивно трансформатор на имеет несколько дополнительных отводов во вторичной обмотке (это может быть автотрансформатор с единственной обмоткой), переключением отводов трансформатора при изменениях входного напряжения управляет контроллер (микропроцессор), поддерживая напряжение на выходе в требуемом диапазоне. Итак, Line-Interactive источник бесперебойного питания работает по принципу управляемого ЛАТРа и действительно реже переключается на батарейное питание при скачках входного напряжения. В этой схеме зарядное устройство конструктивно совмещено с преобразователем.

Одним из преимуществ ИБП такого типа является широкий диапазон допустимых входных напряжений.

В некоторых линейно-интерактивных моделях есть шунтовая цепь между входом первичной электросети и нагрузкой, такие ИБП называются шунтовыми линейно-интерактивными ИБП (UPS -LIB, Reversible + Bypass). В шунтовом режиме питаемая нагрузка не защищается. При работе с источниками на основе ferro-технологий нужно иметь в виду:

Источники бесперебойного питания On-Line типа

Технология On-Line позволяет реализовать самый надежный тип источника бесперебойного питания. С выпрямителя (рисунок 3) напряжение сети поступает на преобразователь постоянного напряжения высокого уровня в низкое ПН1, а далее — на преобразователь постоянного напряжения в переменное выходное напряжение (ПН2). Преобразователь ПН2 — инвертор, питание на который поступает как от аккумуляторов, так и от сети через выпрямитель-преобразователь напряжения ПН1, подключенных параллельно:

. при нормальном входном переменном напряжении инвертор ПН2 питается от выпрямителя;
. при отклонениях в питающей электросети от нормы, входное напряжение для ПН2 снимается с аккумуляторной батареи.



Рис.3. Схем источника бесперебойного питания On-Line типа

В большинстве систем источников бесперебойного питания мощностью до 5 кВА вместо непрерывно подключенного аккумулятора, подключен резервный преобразователь постоянного тока (DC -DC converter), включающийся при сбоях сети и дублирующий шину постоянного тока от низковольтного аккумулятора.

Вывод: даже в случаи незначительных отклонениях параметров входного напряжения от нормы On-Line устройства обеспечивают на выходе номинальное напряжение в области ±1-3%. Присутствие обходной цепи (bypass ) позволяет подключать нагрузку прямо к силовой сети. Качество питания и надежность поставки электроэнергии, предоставляемое устройствами с архитектурой такого типа, существенно выше, чем у предыдущих.

Недостатки источников бесперебойного питания On-line типа: невысокий, по сравнению с ранее рассмотренными типами, КПД (85 -90%) из-за двойного преобразования (по отношению к Standby и Line-Interactive) и высокая цена. Однако, уровень защиты нагрузки и стабильность выходных параметров ИБП — разумный компромисс между безопасностью, КПД и ценой устройства. Потери в ИБП мощностью в 4000ВА не превышают 380Вт и могут быть несоизмеримыми с той задачей, которую решает подобный источник питания.

Новые модификации источников бесперебойного питания

Сейчас имеется несколько новых модификаций источников бесперебойного питания:
. by-pass;
. triple-conversion;
. ferrups.

Первая модификация (by -pass) как и на рисунке 3 представляет собой дополнительный канал передачи электроэнергии в нагрузку, его наличие позволяет обеспечить высокую надежность устройства. Переключение в режим On-line производится автоматически при отклонении параметров выходной сети от нормы либо же в аварийных условиях работы. Таким образом, этот режим способствует увеличению надежности устройства. Вторая модификация (triple -conversion) содержит корректор коэффициента мощности. В третьей модификации (ferrups ) применен феррорезонансный трансформатор, обеспечивающий высокие показатели надежности и широкий диапазон входных напряжений.

Новые подходы в построении источников бесперебойного питания основываются на использовании систем с резервируемым питанием, которые обладают более высокой надежностью выходной сети, так что неисправность одного из элементов не ведет к выходу из строя всей системы. Обычно, это модульные системы, сконструированные или по принципу повышения мощности нагрузки, или для повышения надежности системы, или используя оба принципа совместно. Простейшая система имеет в структуре источника бесперебойного питания вспомогательный модуль, « изолированный в горячем дежурном режиме». Имеется несколько вариантов технических решений таких бесперебойников.

Первый вариант заключается в применении автоматического переключателя (рисунок 4). Входы одного либо более источников питания подключены к единой сети, а с нагрузкой соединяются через автоматический переключатель. Информация о состоянии работы установок, управляющие команды поступают по каналу связи объединяющему ИБП.


Рис.4. Параллельная схема с использованием автоматического переключателя

Второй вариант содержит « распределитель нагрузки» (рисунок 5), равномерно распределяющий нагрузку между отдельными источниками системы.


Рис.5. Параллельная схема с использованием автоматического переключателя

Третий вариант осуществления параллельной структуры (рисунок 6) использует принцип двухуровневой системы. В этом способе один из модулей « ведущий» управляет распределением нагрузки между другими « ведомыми» модулями.



Рис.6. Параллельная схема на основе двухуровневой системы Master-Slave

Четвертый вариант, с резервируемой параллельной архитектурой, выглядит наиболее перспективным. В такой схеме (рисунок 7) резервируются не только модули, но и связи между ними, причем при необходимости любой модуль может выполнять функции ведущего. Лишь для такой схемы характерно наращивание мощности, отсутствие шунтовых цепей, при этом гарантируется непрерывная защита нагрузки при помощи ИБП.



Рис.7. Схема резервируемой параллельной системы

Основные технические характеристики источников бесперебойного питания

Форма питающего напряжения

Важное значение для нагрузки имеет именно эта характеристика источника бесперебойного питания. В режиме работы ИБП от аккумуляторных батарей на нагрузку может поступать выходное переменное напряжение близкое к прямоугольной форме (меандр), из-за сглаживающих свойств фильтров, аппроксимированная синусоида и чистая синусоида. Самая близкая к синусоиде форма выходного напряжения получается применением широтно-импульсной модуляции. Получение синусоиды в качестве питающего напряжения характерно лишь для ИБП On-line и некоторых источников питания Line-Interactive.

Мощность

Полная либо выходная мощность (output power). Обозначается буквой S, единица измерения — VA или Вольт-Амперы. Является геометрической суммой активной и реактивной мощностей. Параметр рассчитывается как произведение действующих (среднеквадратических) значений тока и напряжения. Её значение указывается изготовителем источника питания.

Активная потребляемая нагрузкой мощность. Обозначается буквой P, единица измерения — ватт (Вт). В случаи отсутствия реактивной составляющей в сети, совпадает с полной мощностью. Определяется как произведение полной мощности на косинус угла φ, где φ — угол сдвига фаз векторов линейных напряжения и тока, т.е. P = S . cos (φ). Типичное значение cos (φ) для персональных компьютеров около 0,6-0,7. Эта величина именуется коэффициентом мощности. Очевидно, что для выбора требуемой мощности для источника бесперебойного питания, надо мощность нагрузки в ваттах разделить на величину cos (φ).

Реактивная — обозначается буквой Q и рассчитывается как произведение полной мощности S на синус угла φ (Q = S . sin (φ)). Единица измерения — вольт-ампер реактивный (вар). Характеризует потери в питающих проводах за счет нагружающего их реактивного тока. При cos (φ) = 1 потери отсутствуют, вся мощность вырабатываемая источником питания поступает в нагрузку. Достигают этого за счет использования пассивных компенсирующих устройств или же активной коррекцией коэффициента мощности.

Диапазон входного питающего напряжения

Диапазон входного питающего напряжения (input voltage) — определяет пределы допустимых значений напряжения в сети, при которых источник бесперебойного питания еще способен поддерживать напряжение на выходе, не переключаясь на питание от аккумуляторов. Для некоторых моделей этот диапазон зависит от нагрузки. К примеру, при 100% нагрузке диапазон входных напряжений может составлять 15-20% от номинального, при 50% нагрузке — этот диапазон составляет 20-27% от номинального, а при 30% нагрузке — 40% номинального. От этого параметра зависит срок службы аккумуляторов, чем шире диапазон, тем дольше прослужат аккумуляторы при прочих равных условиях.

Частота входного напряжения

Частота входного напряжения (input frequency) — характеризует диапазон отклонения частоты электросети. При нормальных условиях эксплуатации отклонение частоты от номинального значения как правило не превосходит 1 Гц.

Коэффициент искажения формы выходного напряжения

Коэффициент искажения формы выходного напряжения (total harmonic distortion — THD) характеризует отклонение формы выходного напряжения от синусоиды, измеряется в процентах. Маленькие значения коэффициента соответствуют форме выходного напряжения, приближающейся к синусоидальной.

Время переключения режимов

Время переключения режимов (transfer time) характеризует инерционность источника бесперебойного питания, для разных источников составляет приблизительно до 2-15 мс.

load) характеризует устойчивость источника бесперебойного питания при перегрузках по мощности, измеряется в процентах по отношению к номинальной мощности. Определяет устойчивость ИБП к нестационарным перегрузкам.

Время автономной работы

Время автономной работы определяется емкостью аккумуляторной батареи и размером нагрузки. Для типовых источников бесперебойного питания небольшой мощности, питающих персональные компьютеры, оно составляет 5-10 мин. Это время рассчитано на то, чтобы пользователь мог закрыть все работающие приложения с сохранением информации и выключить ПК в нормальном режиме.

Крест-фактор

Крест-фактор (crest factor) — отношение пикового значения потребляемого тока к среднедействующему. Величина зависит от формы питающего напряжения.

Срок службы аккумуляторной батареи

Срок службы аккумуляторных батарей составляет 4-5 лет, но реальный сильно зависит от условий эксплуатации: частоты переключений в автономный режим, условий зарядки, окружающей среды.

Наличие холодного старта

Наличие холодного старта — это возможность включения источника бесперебойного питания при отсутствии напряжения в питающей сети. Такая функция полезна, когда необходимо срочно выполнить какие либо действия независимо от наличия напряжения в электросети.

Аккумуляторы ИБП

Общие сведения

Источником, энергия которого используется для питания нагрузки в критических режимах работы, служит аккумуляторная батарея. В источниках бесперебойного питания мощностью до 20 кВт как правило применяются герметичные свинцово-кальциевые аккумуляторы с электролитом суспензионного типа. В аккумуляторах такого типа электролит обездвижен, либо силикагелем либо скекловолокном, что делает их непротекаемыми. Это свойство электролита позволяет эксплуатировать аккумуляторы в любом положении, кроме того, они не нуждается в периодическом пополнении электролита и другом обслуживании.

Электроды произведены из свинцово-кальциевого сплава, обеспечивающего продолжительный срок службы и широкую область применения аккумуляторов, рабочий диапазон температур составляет от минус 20 до плюс 50°С (для некоторых типов аккумуляторов). Аккумуляторы не страдают так называемым « эффектом памяти», могут длительно храниться в заряженном состоянии (до года), при этом ток саморазрядки незначителен.

Конструкция аккумуляторов

Конструкция аккумуляторов традиционна — ударопрочный пластмассовый корпус поделен на секции — « банки». Наборы катодных и анодных пластин разделены прокладками — сепараторами из стекловолокна. Активная часть электролита — серная кислота. Крышка герметично соединена с корпусом, без возможности разобрать аккумулятор. В верхней части крышки размещены клапаны (по одному на каждую секцию), обеспечивающие выпуск газа в случае его избыточного образования в ходе работы, и пластинчатые выводы. Клапаны закрыты дополнительной съемной крышкой.

Хранение аккумуляторов

Продолжительность эксплуатации аккумуляторов составляет приблизительно 5 лет. При ежедневном использовании источника бесперебойного питания, собственные возможности заряда гарантируют эксплуатацию в ходе этого срока. При продолжительном неиспользовании аккумуляторы подвергаются саморазряду. Для аккумуляторов YUASA скорость саморазряда составляет приблизительно 3% в месяц при температуре окружающей среды около 20°С. Если в ходе длительного интервала времени аккумуляторы не заряжаются, то на отрицательных пластинах аккумулятора формируются сульфаты свинца. Это явление известно как « сульфатация». Сульфат свинца действует как изолятор, препятствуя приему заряда аккумулятором. Чем глубже произошла сулъфатация пластины, тем меньший заряд может принять аккумулятор.

Чтобы исключить необратимые последствия при хранении, надо заряд проводить через срок, соответствующий условиям температуры окружающей среды. С целью обеспечения оптимального срока использования, длительно хранящиеся аккумуляторы, должны периодически подзаряжаться.

Способы заряда аккумуляторов ИБП

Зарядка аккумуляторов является главной составляющей ее обслуживания. Срок использования аккумуляторов зависит от эффективности выбранного способа заряда. Имеются следующие способы заряда:
— зарядка при постоянном напряжении;
— зарядка при постоянной силе тока;
— двухступенчатая зарядка при постоянном напряжении.

Предпочтительным способом является зарядка при постоянном напряжении. В этом случае аккумуляторная батарея подключается к источнику энергии, зарядное напряжение которого поддерживается постоянным в ходе всего процесса заряда. В ходе заряда сила тока понижается и становится значительно меньше, чем при заряде способом постоянного тока, и в конце заряда опускается почти до нуля. При этом батарею заряжают до 90-95% ее номинальной емкости.

Выбор источника бесперебойного питания

Спектр типов источников бесперебойного питания, как средств защиты оборудования и компьютерных систем, достаточно широк. Вопрос выбора требуемого источника питания очень непрост. Чтобы решить вопрос выбора того или иного ИБП, надо попробовать проанализировать факторы, влияющие на условия работы источника питания.

Во-первых, надо попытаться оценить значимость питаемой системы. Вполне возможно, что для домашнего или офисного варианта будет достаточно источника бесперебойного питания Off-line либо Line-interactive типа. ИБП On-line типа больше подходит для серверного компьютера и прочих видов нагрузки, имеющих повышенные требования к качеству и надежности электропитания.

Во-вторых, необходимо оценить качество электросети: вероятность и частота отключения напряжения, наличие колебаний напряжения и различных помех.

В-третьих, нужно оценить мощность источника бесперебойного питания. Чтобы ориентировочно представить, какой мощности ИБП требуется, надо определить защищаемую аппаратуру и рассчитать для нее суммарное значение потребляемой мощности. Затем, полученные ватты нужно перевести в ВА, разделив на коэффициент мощности. Для компьютерного оборудования коэффициент мощности равен 0,5-0,6.

Производители не рекомендуют загружать источник бесперебойного питания на величину больше чем 80% от максимальной нагрузки. Надо отметить, что лазерные принтеры не рекомендуется подключать к источнику бесперебойного питания ввиду высокого энергопотребления нагревательного элемента.

Слово «инвертор» применительно к электротехнике означает устройство, преобразующее напряжение постоянного тока в переменный ток . При этом амплитуда напряжения может изменяться в большую или меньшую сторону.

Инверторы могут быть как отдельными устройствами (сварочный или преобразователь напряжения бортовой сети автомобиля в напряжение 220 В переменного тока), так и отдельным блоком или частью схемы (блок питания компьютера, телевизора). Мы же сейчас поговорим об устройствах, использующихся для электропитания в аварийных ситуациях, связанных с исчезновением напряжения сети.

Куда уходит напряжение и когда вернется?

Нет сетей со стопроцентной надежностью . Внезапно свет в квартире или доме гаснет. Связано это с повреждениями кабельных или воздушных линий, электрооборудования подстанций. Аварии в пределах города, если они не связаны со стихийными бедствиями, ликвидируются относительно быстро. Для этого работают диспетчерские службы и оперативные бригады. А исключить поврежденный участок и заменить его другим возможно из-за их взаимного резервирования.

В сельской местности и дачных хозяйствах все иначе. Линия питания одна, ехать бригаде далеко. После ураганов или гроз количество поваленных деревьев на провода линий увеличивает шансы остаться в темноте надолго. А при повреждении силового трансформатора ждать придется больше суток.

Время идет, продукты в холодильнике портятся. Не вскипятить чайник – он электрический. Приготовить ужин не на чем. Разрядилась батарея мобильного телефона – невозможно позвонить в МЧС. В темноте не найти лекарство для бабушки. Остывают нагревательные приборы, а вместе с ними – и сам дом.

Чтобы этого не происходило, нужен персональный, независимый от сети источник электроснабжения . Для этой цели и применяется инвертор.

Принцип работы источника бесперебойного питания

Простейший инвертор – источник бесперебойного питания (ИБП) компьютера . Внутри него находится аккумулятор, накапливающий энергию. Он работает в режиме постоянной подзарядки. Для этой цели в состав ИБП входит зарядное устройство, следящее за уровнем напряжения на батарее. В зависимости от него оно регулирует ток заряда или отключает батарею.

Как только напряжение питания исчезает, устройство управления отключает нагрузку от сети. Одновременно она подключается к аккумулятору через инвертор, являющийся частью ИБП.

Аккумуляторные батареи на 220 В существуют, но занимают помещение, размером с комнату. Поэтому во всех ИБП аккумуляторы изготавливаются на низкое напряжение. Инвертор, преобразуя его в синусоидальное, одновременно повышает эту величину до номинального напряжения сети.

Такой источник питания хорош тем, что постоянно готов к работе и переключается мгновенно . Но вот главные его недостатки, не позволяющие использовать ИБП для бесперебойного электроснабжения дома или его части:

Инвертор для бесперебойного энергоснабжения дома

Инвертор является логичным развитием источника бесперебойного питания компьютера, лишенным присущих ему недостатков.


Увеличение емкости аккумуляторной батареи напрямую связано с ее габаритными размерами. Размещать ее в корпусе инвертора становится нецелесообразным. Поэтому он выделяется в самостоятельное устройство, решающее три основных задачи:

  • заряд батареи и контроль напряжения сети;
  • переключение источников снабжения;
  • преобразование напряжения батареи в величину 220 В переменного тока.

Основная характеристика инвертора – его мощность . Но при ее выборе учитывается один нюанс. Мы уже говорили, что ИБП не может работать с перегрузкой. То же самое касается и инвертора. Если в составе нагрузки планируются холодильник, электродвигатели насосов отопительных котлов, то учитываются их пусковые токи . В момент запуска электродвигатели потребляют ток, в 3-5 раз больший номинального. Если суммарный ток нагрузки при включении холодильника превысит номинальный ток инвертора, его отключит защита.

Еще одна характеристика инвертора, на которой стоит заострить внимание, это – качество преобразования постоянного тока в переменный. Напряжение в сети изменяется во времени по синусоидальному закону. Ни одно бытовое полупроводниковое устройство не сгенерирует синусоидальное напряжение так, чтобы оно в точности повторяло сетевое. Величина напряжения на выходе изменяется не плавно, а дискретно, ступеньками. Чем чаще происходит это изменение (выше частота дискретизации ), тем точнее сформированный сигнал повторяет синусоидальный.


Но увеличение частоты дискретизации ведет к удорожанию устройства. А ступенчатая форма напряжения неприемлема для работы электродвигателей и некоторых полупроводниковых устройств. Такие инверторы, вырабатывающие так называемую модифицированную синусоиду , используются только для питания активной нагрузки: нагревательные элементы, лампы накаливания. Для приборов, критичных к форме напряжения питания, придется приобрести более дорогой инвертор .

Выбор аккумуляторов для инвертора

Батареи к инвертору приобретаются отдельно . Но и тут есть особенность: аккумуляторы бывают кислотными или щелочными. Принципы заряда у них разные, поэтому каждый инвертор годится только для работы с определенным типом батарей . Иначе он будет неправильно определять степень заряженности аккумуляторов и заряжать их.


Использование автомобильных аккумуляторных батарей в составе инверторов не оправдано. Они, хоть и способны выдать в течение короткого времени мощный импульс тока (в автомобиле это нужно для работы стартера), не переносят глубоких разрядов. А разряды неизбежны при длительной работе инвертора. Поэтому ресурс таких батарей в системах энергоснабжения ограничен.

Для работы с инверторами оптимально применение гелевых или стекловолоконных аккумуляторов. Они изготовлены по специальной технологии и способны многократно переносить глубокие разряды без потерь. И опять же: зарядное устройство инвертора должно поддерживать режим заряда таких батарей.


Выбирая емкость аккумуляторов, исходят из желаемого времени автономной работы устройства (T). Его нетрудно подсчитать, зная емкость (C) , мощность планируемой нагрузки (P) и напряжение батареи (U):

Пример расчета времени автономной работы
Напряжение батареи, В Емкость батареи, А∙ч Время работы, ч
12 55 150 4
12 190 150 15

Цифры в последней колонке не впечатляют. Да и стоимость инверторов и аккумуляторов к ним не такая уж и маленькая.

Так есть ли смысл в инверторе?

Достоинства и недостатки инверторов

Альтернативой инверторам являются дизельные или бензиновые генераторы. Поэтому и выявлять их достоинства будем, сравнивая с получением электричества с помощью двигателей внутреннего сгорания. Перечислим недостатки генераторов, от которых можно избавиться с помощью инверторов :

  • необходимость постройки отдельного помещения с вентиляцией и подогревом в зимнее время;
  • хранение запаса топлива (а для дизеля – замена летнего топлива на зимнее при наступлении холодов);
  • шум при работе, доставляющий неудобство не только хозяевам, но и соседям;
  • необходимость периодического обслуживания (проверки уровня масла, замены свечей, фильтров);
  • ручной запуск, необходимость контроля параметров в процессе работы.

Инвертору же не требуется отдельного помещения, он не создает шума при работе (работа вентиляторов охлаждения – не в счет). Вмешательство пользователя в процесс работы не требуется. При разряде аккумулятора (падении величины напряжения на батарее до минимально возможного уровня) устройство само отключится и замрет в ожидании восстановления напряжения сети. Затем оно зарядит батарею, и будет ждать, когда сможет вновь оказаться полезным.


И автоматическое переключение с питания от сети на питание от батареи подкупает. Но время автономной работы инвертора мало . Даже, если уменьшить нагрузку до минимально возможной, рано или поздно батарея разрядится. «Конец света» отсрочен, но неизбежен.

Поэтому при решении вопроса: что использовать для аварийного питания жилища – генератор или инвертор рассматривают комплекс факторов.

Инвертор или генератор?

Для начала собирают статистические данные о том, как часто и на какой период пропадает напряжение в городе или поселке. Если эти события случаются очень редко, то нет смысла приобретать генератор, строить для него отдельное помещение, где он будет простаивать в ожидании своего часа.

Затем определяют суммарную мощность электроприборов , питание которых планируется от инвертора в аварийном режиме работы. В этот список нет смысла включать наружное и подвальное освещение, а при наличии в доме трех телевизоров достаточно одного. В целях экономии жертвуют теми электроприборами, без которых можно пережить сутки или двое. Остальные при исчезновении напряжения питания придется отключить от сети вручную, или предусмотреть для этой цели автоматику.

Но зато учитывают систему теплоснабжения (отопительный котел), если он есть. Причем, с учетом всех пусковых токов его электродвигателей, не исключено, что ему придется запускаться при питании дома от инвертора.

И не забывают главное – холодильник с его пусковым током, если он компрессорный. Также добавить в список микроволновую печь или электроплитку, электрочайник.

По суммарной мощности нагрузки выбирают модель инвертора , учитывая дополнительно, какого качества синусоидальное напряжение он будет вырабатывать.

Затем выбираются аккумуляторные батареи с учетом желаемого времени работы инвертора на рассчитанную ранее нагрузку. И здесь нужен разумный подход. Если финансов недостаточно, то придется заранее продумать, чем можно пожертвовать. Во главу угла ставятся те нагрузки, для которых требуется постоянная работа: холодильник, котел, приборы отопления. Компьютеры и телевизор на определенном этапе придется отключить, чтобы батарея инвертора продержалась подольше.

Осталось сложить цены, получив итоговую сумму. И проделать тот же самый расчет для генераторной установки . Здесь тоже можно сэкономить: при нечастых отключениях от сети совсем не обязательно строить под нее помещение. Можно хранить ее в сарае, а при необходимости – вынести на улицу и подключить к сети с помощью гибкого кабеля и разъемного соединения. Не забудьте добавить в список запасные части, необходимые для обслуживания установки в течение срока службы альтернативного ей инвертора. Только так можно рассчитать экономический эффект, а не первоначальные затраты на приобретение оборудования. Инвертор не потребует дополнительных капиталовложений на протяжении всего срока службы, а вот двигателю внутреннего сгорания уход необходим всегда.

Теперь сравниваем получившиеся суммы и принимаем решение. И помните: за комфорт всегда нужно переплачивать . Готовы вы к этому или нет – решать вам.