Каким образом происходит теплопередача. Виды теплообмена: коэффициент теплопередачи

Всего существует три простых (элементарных) вида передачи тепла:

§ Теплопроводность

§ Конвекция

§ Тепловое излучение

Существуют также различные виды сложного переноса тепла, которые являются сочетанием элементарных видов. Основные из них:

§ теплоотдача (конвективный теплообмен между потоками жидкости или газа и поверхностью твёрдого тела);

§ теплопередача (теплообмен от горячей жидкости к холодной через разделяющую их стенку);

§ конвективно-лучистый перенос тепла (совместный перенос тепла излучением и конвекцией);

§ термомагнитная конвекция

§ Коли́чество теплоты́ - энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основныхтермодинамических величин.

§ Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

§ Единицы измерения: Джоули Дж

27.Внутренняя энергия тел и способы ее измерения

Внутренняя энергия – это одно из фундаментальных понятий в физике. К формированию этого понятия можно подойти различными путями, например, авторы учебника формирование этого понятия начинают с опыта о кажущемся нарушении закона сохранения энергии при соударении неупругих тел. Опыт: шар падает на спальную плиту. Непонятно, до удара, шар и стальная плита обладали внутренней энергией. Второй способ: используется идея о том, что работа представляет собой меру изменчивости или превращения энергии. Если тело способно совершить работу, то оно обладает энергией. Здесь можно предложить опыт с картофелем пистолетом (колба закрывается картофельной пробкой и помещается под колпак воздушного насоса, откачав воздух, пробка вылетает). Возникает вопрос: Обладал ли воздух в колбе энергией? (Да).

Дальнейшая задача состоит в том. Чтобы ознакомить учащихся со способами измерения внутренней энергии. Для этого проводится ряд опытов: нитью натирают цилиндр и резиновая пробка вылетает; в сосуд наливают немного воды, накачивают в него воздух, пробка вылетает и в сосуде наблюдается пар; в шарообразную колбу с изогнутым концом, в трубку наливается вода (капелька) держа колбу в руках капелька будет перемещаться по трубке. На основе опытов приходим к выводу, что внутреннюю энергию можно изменить двумя способами: теплообмен и совершение работы.

Виды теплопередачи: теплопроводность, конвекция, излучение.

Теплопроводность . Из жизненного опыта ученикам известен процесс передачи энергии от одного тела другому. Однако, они не подставляют себе различия тел по теплопроводности. Поэтому необходимо рассмотреть этот вопрос, используя опыт: берут стальную и медную проволоки, на равных расстояниях приклеивают парафином (пластилином) спички. Из опыта дел вывод: разные тела обладают разной теплопроводностью. При изучении вопроса можно сделать проблемную ситуацию: в картонной коробке кипятят воду.

Полезно также подчеркнуть, что при теплопроводности происходит перенос энергии, связанной с хаотическим движением микрочастиц, само же вещество не переносится. Для закрепления материала решают качественные задачи.

Конвекция . При изучении конвекции можно предложить следующие опыты: U образная трубка с перегородкой в верхней части, заполняется водой, выше уровня перегородки, затем с одного конца внизу нагревается (в трубки помещаются марганцовка, в одну трубку к низу, в другую сверху…); в трубку с двух сторон вставляют пробки с термометрами и начинают ее нагревать (термометр, находящийся выше покажет большую температуру). При конвекции происходит перенос вещества.

Излучение . Излучение, как вид переноса, связано с излучением и поглощением частицами вещества электромагнитных волн и поэтому не может быть объяснено обстоятельно 8-классникам, поэтому при ознакомлении учащихся с этим видом теплопередачи, следует проводить широко экспериментально. Здесь можно поставить проблемный опыт. Капля жидкости в трубке термоскопа перемещается вправо, указывая на расширение воздуха в термоскопе от нагревания. Формулируют проблему: "Почему капля в термоскопе перемещается и тогда, когда нагреватель расположен на одном и том же уровне с термоскопом?". Подчеркивается, что в данном случае тепло передается от нагретого тела с помощью невидимых глазом лучей – тепловых лучей. Здесь же подчеркивается, что при излучении наличие среды необязательно, перенос энергии может происходить и в вакууме (передача энергии от Солнца к Земле).

Количество теплоты . Единицы количества теплоты . Процесс совершения механической работы и процесс теплопередачи имеют общий признак – изменяют внутреннюю энергию тела.

Меру изменения внутренней энергии путем совершения работы назвали количеством работы, а меру изменения внутренней энергии в процессе теплопередачи назвали количеством теплоты.

Далее выясняют от чего зависит количество теплоты Q полученное или отданное телом. Для расчета количества теплоты необходимо ввести понятие удельной теплоемкости. Необходимо выяснить с учащимися, что количество теплоты, полученное (отданное) телом при теплопередаче зависит от рода вещества. Эту зависимость характеризую. Особой величиной, называемой удельной теплоемкостью вещества. Это можно проверить, проводя следующий эксперимент: используют прибор Тиндаля и замечают, что алюминиевый цилиндр погружается больше в парафин, затем железный и медный. Делают вывод: тела из разных веществ, но одной массы, отдают при охлаждении и требуют при нагревании на одну температуру разное количество теплоты.

После этого вводим понятие удельной теплоемкости. Для закрепления необходимо работать с таблицей удельных теплоемкостей, ставя следующие вопросы: 1. Что означает, что удельная теплоемкость воды 4200 Дж/ кг К? 2. Найдите вещество для которого теплоемкость наибольшая и т.п.

Введя понятие удельной теплоемкости, можно рассчитать количество теплоты необходимое для нагрева тела массой 1 кг на температуру для случая m вещества: . Далее изучается испарение, кипение, находят количество теплоты необходимое для плавления, для парообразования и т.д. Необходимо расплавить лед, испарить воду.

AB – процесс нагревания Q 1 =mc л (T-T 1); BC – плавление Q 2 =λm; CD – нагревание Q 3 =mc H 2O (T 2 -T o); DE – парообразование Q 2 =μm

Способы передачи теплоты - теплота всегда передается от тел более нагретых к менее нагретым. Способы передачи теплоты от твердого тела (стенки) к обтекающей его жидкости или газу называются теплоотдачей. Способы передачи теплоты из одной среды в другую, разделенных перегородкой (стенкой), называются теплопередачей. Различают три способа переноса теплоты: теплопроводность, конвекцию и излучение (радиацию).

Теплопроводностью называется процесс распространения теплоты в теле (одном) посредством передачи кинетической энергии от более нагретых молекул к менее нагретым, находящимся в соприкосновении друг с другом. В чистом виде теплопроводность имеет место в твердых телах очень тонких, неподвижных слоях жидкости и газа.

Способы передачи теплоты распространяются через стенки котла. Теплопроводность различных веществ различна. Хорошими проводниками теплоты являются металлы. Весьма незначительна теплопроводность воздуха. Слабо проводят теплоту пористые тела, асбест, войлок и сажа.

Конвекцией называется перенос, теплоты за счет перемещения молярных объемов среды. Обычно конвективный способ перенос теплоты происходит совместно с теплопроводностью и осуществляется в результате свободного или вынужденного движения молярных объемов жидкости или газов (естественная или вынужденная конвекция). Естественной конвекцией распространяется теплота от печей, отопительных приборов, при нагревании воды в паровых котлах, охлаждении обмуровки котлов и других тепловых устройств. Свободное движение жидкости или газов обусловлено различной плотностью нагретых и холодных частиц среды. Например, воздух около поверхности печи нагревается становится легче, поднимается вверх, а на его место поступает более тяжелый, холодный. В результате этого в комнате возникает циркуляция воздуха, которая переносит теплоту.

Способы передачи теплоты включают в себя конвекцию. Вынужденная конвекция имеет место при передаче теплоты от внутренней стенки котла к воде, движущейся под действием насоса.

Излучением (радиацией) называется передача теплоты от одного тела к другому путем электромагнитных волн через прозрачную для теплового излучения среду. Этот процесс передачи теплоты сопровождается превращением энергии тепловой в лучистую и, наоборот, лучистой в тепловую. Радиацией передается теплота от факела горящего топлива к поверхности чугунных секций или стальных труб котла. Радиация - это наиболее эффективный способ передачи теплоты, особенно если излучающее тело имеет высокую температуру, а лучи от него направлены перпендикулярно к нагреваемой поверхности.

Понятие о теплопередаче. Рассмотренные выше три вида теплообмена в чистом виде встречаются очень редко. В большинстве случаев один вид сопровождается другим. Примером этого может служить передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла (рис. 7). Слева поверхность ее соприкасается с горячими газообразными продуктами сгорания и имеет температуру t 1 справа омывается водой и имеет температуру t 2 Температура в стенке снижается в направлении оси х.

Рис. 7.Передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла.

В данном случае теплота от газа к стенке передается одновременно путем конвекции, теплопроводности и излучением (лучистый теплообмен). Одновременная передача теплоты конвекцией, теплопроводностью и излучением называется сложным теплообменом.

Результат одновременного действия отдельных элементарных явлений приписывают одному из них, которое и считают главным. Так, радиация (излучение), называемая еще прямой отдачей, в передаче теплоты в топочной камере от топочных газов к внешней поверхности нагрева котла играет главенствующую роль, хотя наряду с ней в передаче теплоты участвуют и конвекция, и теплопроводность.

Способы передачи теплоты от внешней поверхности нагрева к внутренней через слой сажи, металлическую стенку и слой накипи осуществляются только путем теплопроводности. Наконец, от внутренней поверхности нагрева котла к воде теплота передается только конвекцией. В газоходах котла процесс теплообмена между стенкой секции и омывающими ее газами также является результатом совокупного действия конвекции, теплопроводности и радиации. Однако в качестве основного явления принимается конвекция.

Количественной характеристикой передачи теплоты от одного теплоносителя к другому через разделяющую их стенку является коэффициент теплопередачи К. Для плоской стенки коэффициент К количество теплоты, переданной в единицу времени: от одной жидкости к другой на площади 1 м 2 при разности температура между ними в один град. - определяется по формуле:

К = (1/α 1 +δ 3 /λ 3 + δ ст /λ ст +δ н /λ н + 1/α 2) -1

где α 1 - коэффициент теплоотдачи от газов к стенке поверхности нагрева, Вт/(м 2 ×град); δ 3 - толщина золовых или сажевых отложений (так называемые наружные загрязнения), м; δ ст - толщина стенки секций или труб, м; δ н - толщина накипи (так называемое внутреннее загрязнение), м; λ 3 , λ ст, λ в - соответствующие коэффициенты теплопроводности золы или сажи, стенки и накипи, Вт/(м×град); α 2 -. коэффициент теплоотдачи от стенки к воде/ Вт/(м 2 ×град).

В соответствии с приведенным примером сложного теплообмена (см. рис. 7) общий коэффициент теплоотдачи, а от газов к стенке котла соответственно равен:

α 1 = α к + α л

где α к и α л - коэффициенты, теплоотдачи конвекцией и излучением.

Величина, обратная коэффициенту теплопередачи, называется термическим сопротивлением теплопередачи. Для данного случая:

R = 1/K = 1/α 1 +δ 3 /λ 3 +δ cт /λ ст +δ н /λ н + 1/α 2

Различные вещества имеют разные коэффициенты теплопроводности.

Коэффициент теплопроводности К - количество теплоты, передаваемое через единицу площади поверхности нагрева в единицу времени при разности температур в 1 град и толщине стенки в 1 м. При использовании внесистемных единиц (ккал в ч) размерность коэффициента теплопроводности ккал×м/(м 2 ×ч×град), в системе СИ - Вт/ (м × град).

Коэффициенты теплопроводности различных материалов, наиболее часто встречающихся в отопительно - котельной технике, приведены ниже, Вт/(м×град).

Количество теплоты Q, передаваемое через стенку, определяется по формуле:

где К - коэффициент теплопередачи, Вт/ (мг×град); ∆t - средняя разность температур греющей и нагреваемой сред или среднелогарифмический температурный напор, град; Н - площадь поверхности нагрева, м 2 .

Среднелогарифмический температурный напор ∆t определяется по формуле:

∆t = ∆t - ∆t м /2,31 g (∆t 0 /∆t м)

где ∆t g и ∆t м - наибольшая и наименьшая разности температур греющей и нагреваемой среды.

Рис. 8. Характер изменения температур рабочих жидкостей при

а - прямотоке; б - противотоке.

Характер изменения температур рабочих жидкостей показан на рис. 8. Если в теплообменном аппарате греющая и нагреваемая жидкости протекают в одном направлении, то такая схема движения называется прямотоком (см. рис. 8, а), а в противоположных - противотоком (см. рис. 8, б).

Для единицы площади теплопередающей поверхности удельный поток, обозначаемый q, будет равен:

Из приведенных формул видно, что количество передаваемой теплоты тем больше, чем больше площадь поверхности нагрева Н и чем больше средняя разность температур или температурный напор и коэффициент теплопередачи К. Наличие на стенке котла накипи, золы или сажи значительно снижает коэффициент теплопередачи (см. ниже пример).

Определяющим фактором в передаче теплоты радиацией являются температура излучающего тела и степень его черноты. Поэтому, чтобы интенсифицировать передачу теплоты радиацией, необходимо увеличить температуру излучающего тела, повысив шероховатость поверхности.

Теплоотдача конвекцией зависит: от скорости движения газов, разности температур греющей и нагреваемой среды, характера обтекания газами поверхности нагрева - продольное или поперечное, вида поверхности - гладкая или оребренная. Основными способами интенсификации передачи теплоты конвекцией являются: повышение скорости газов, их завихрение в газоходах, увеличение площади поверхности нагрева за счет ее оребрения, повышение разности температур между греющей и нагреваемой средами, осуществление встречного (противоточного) омывания.

Пример. Рассмотрим влияние накипи и сажи на теплопередачу в котле, используя данные настоящего раздела. Принимаем толщину стенки секции чугунного котла δ 1 = 8 мм, а отложившиеся на ней слой накипи толщиной δ 2 = 2 мм и слой сажи δ 3 = 1 Гмм. Коэффициенты теплопроводности стенки λ 1 , накипи λ 2 и сажи λ 3 соответственно принимаем равными 54; 0,1 и 0,05 ккал/(м×ч×град) (√62,7; 0,116 и 0,058 Вт/ (м 2 × К). Значения коэффициентов теплоотдачи: от, газов к стенке α 1 = 20 ккал/(м 2 ×град); от стенки к воде α 2 = 1000 ккал/(м 2 ×ч×град). Температуру газов принимаем равной t газ = 800°С, воды t = 95 С.

Расчеты производим для чистой и загрязненной стенок чугунного котла.

А. Стенка котла чистая.

Найдем коэффициент теплопередачи:

К = (l/α 1 + δ/λ + l/α 2) -1 = (1/20 + 0,008/54 + 1/1000) -1 = 1/0,0512 = 19,5 ккал/(м 2 × ч ×град) = 22,6 Вт/ (м 2 × град) и тепловой поток через стенку.

q = K∆t = 19,5 (800-95) = 13700 ккал/(м 2 ×ч) = 15850 Вт/ (м 2).

Определим температуру наружной поверхности стенки чугунной секции, воспользовавшись формулой

q =α 1 (t газ - t cт) -1 q = α 1 t газ - α 1 t ст; α i t ст = α 1 t газ

t cт = t газ - q/α 1 = 800 - 13700/20 = 115 °С.

Из расчета видно, что при чистой стенке котла температура ее мало отличается от температуры воды внутри котла.

Б. Стенка котла загрязненная.

Повторив весь расчет, найдем:

К = (l/α 1 +δ 1 /λ 1 + δ 2 /λ 2 + δ 3 /λ 3 + 1/α 2) -1 = (1/20+0,008/54+0,002/0,1 (+0,001/0,05+ 1=1000) -1 = (0,0912) -1 = 11ккал/ (м 2 ×ч×1×град) = 12,7 Вт/ (м 2 ×град)

q = 11 (800 - 95) = 7750 ккал/ (м 2 ×ч) = 8960 Вт/ (м 2), t ст = 800 - 7750/20 = 412C.

Из расчета видно, что отложение сажи нежелательно тем, что она, обладая малой теплопроводностью, затрудняет передачу теплоты от топочных газов к стенкам котла. Это приводит к перерасходу топлива, снижению выработки котлами пара или горячей воды.

Накипь, имея малую теплопроводность - значительно уменьшает передачу теплоты oт стенки котла к воде, в результате чего стенки, сильно перегреваются и в некоторых случаях; разрываются, вызывая аварии котлов.

Сравнивая результаты расчета, видим, что теплопередача через загрязненную стенку уменьшилась почти в два раза, температура стенки чугунной секции при накипи возросла до опасных, по условиям прочности металла, пределов, что может привести к разрыву секции. Этот пример наглядно показывает необходимость регулярной очистки котла как от накипи, так и от сажи или золы.

Определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией , полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом - это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

Теплопередача - это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

где, как и ранее, q - тепловой поток (в джоулях в секунду, т.е. в Вт), A - площадь поверхности излучающего тела (в м 2), а T 1 и T 2 - температуры (в кельвинах) излучающего тела иокружения, поглощающего это излучение. Коэффициент s называетсяпостоянной Стефана - Больцмана и равен (5,66961 х 0,00096)х10 -8 Вт/(м 2 DК 4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя - так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана - Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей - это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце ; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия - источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

Введение

ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом – это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

ТЕПЛОПЕРЕДАЧА

Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

ТРИ ОСНОВНЫХ ВИДА ПЕРЕДАЧИ ТЕПЛА

Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

1.Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное).

Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ /Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м 2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:

где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры.

Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин – коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.

ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Вещества и материалы Теплопроводность, Вт/(мD К)
Металлы
Алюминий
Бронза
Висмут 8,4
Вольфрам
Железо
Золото
Кадмий
Магний
Медь
Мышьяк
Никель
Платина
Ртуть
Свинец
Цинк
Другие материалы
Асбест 0,08
Бетон 0,59
Воздух 0,024
Гагачий пух (неплотный) 0,008
Дерево (орех) 0,209
Магнезия (MgO) 0,10
Опилки 0,059
Резина (губчатая) 0,038
Слюда 0,42
Стекло 0,75
Углерод (графит) 15,6

В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества.

Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.

Конвекция.

Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха.

Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

q = hA (T W  T ),

где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м 2), T W и T  – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 хК).

Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные.

Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса.

Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

3.Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур.

На рис. 8 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м 2), а T 1 и T 2 – температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент s называется постоянной Стефана – Больцмана и равен (5,66961х0,00096)х10 –8 Вт/(м 2 DК 4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

СПОСОБЫ ТЕПЛОПЕРЕДАЧИ .

При осуществлении термической сушки различают два про­цесса:

1) испарение подлежащей удалению влаги;

2) отвод от поверхности материала образовавшегося пара.

Для испарения 1 кг влаги к области парообразования необ­ходимо подвести вполне определенное количество теплоты. По­этому теплопередача составляет основу рабочих процессов, про­исходящих в сушильных установках. На практике в боль­шей или меньшей степени реализуются все три основные формы теплопереноса: 1) теплопроводность; 2) конвекция; 3) из­лучение.

Кроме того, во многих сушильных установках большое зна­чение имеет особая разновидность теплопередачи, а именно, тепло­передача путем кратковременного контакта, которая наблюдается, например, в вальцовых сушилках, на нагревательных решетках вакуумных сушилок и в барабанных сушилках при взаимодей­ствии холодного материала с нагретыми элементами внутренних устройств.

Подход к проблемам теплопередачи в сушильной технике отличается от подхода в других отраслях машиностроения. В ма­шиностроении форма и размеры теплопередающих и тепловоспринимающих элементов в большинстве случаев хорошо известны (трубы, пластины и т. п.). В сушильных установках геометри­ческая форма большинства сельскохозяйственных продуктов, подвергаемых сушке, чрезвычайно разнообразна, поэтому ее трудно с достаточной степенью точности описать аналитическими зависимостями.

Другая сложность состоит в том, что зона испарения влаги в материале непрерывно перемещается и зависит от условий процесса. По этой причине в сушильных установках, более чем в какой-либо другой области техники, экспериментальные иссле­дования составляют основу для расчета и проектирования уст­ройств.

Основные законы теплопередачи, излагаемые ниже, будут представлены в объеме, необходимом для полного понимания процессов, происходящих в сушильных установках сельско­хозяйственного назначения.

Теплопроводность как способ теплопередачи

Теплопередача посредством теплопроводности происходит внутри твердых тел, неподвижной жидкости и газа благодаря переносу энергии в форме теплоты от одной элементарной частицы к другой. Теплота переносится из области с высокой температурой в область с более низкой. В установившемся режиме плотность теплового потока между двумя параллельными поверхностями тела зависит от температурного напора, толщины стенки и тепло-физической константы - теплопроводности К (рис. 3.13):

Рис. 3.13. Теплопроводность плоской стенки

q – плотность теплового потока, ккал/(м2·ч);

λ – теплопроводность, ккал/(м·ч·ºС);

U1, U2 – температура на первой и второй поверхностях, ºС;

s – толщина стенки, м

В случае гомогенного тела, ограничен­ного плоскими поверхностями, температура между ними при установившемся тепловом режиме падает по линейному закону. Для

тел сложной структуры процесс в слое бесконечно малой тол­щины ds описывается уравнением вида

где dυ - разность температур в слое бесконечно малой тол­щины, °С. Знак минус в уравнении указывает на то, что теп­ловой поток направлен в сторону меньшей температуры.

Чтобы на основании рассмотрения процесса в слое бесконечно малой толщины сделать выводы о процессе во всем теле, необ­ходимо провести интегрирование при определенных граничных условиях.

Конвекция (способ теплопередачи)

Теплопередача конвекцией по существу включает два процесса (рис. 3.17):

1) передача тепла теплопроводностью от поверхности твер­дого тела через ламинарный пограничный слой к окрестностям ядра турбулентного потока;

2) передача тепла путем турбулентного переноса от ламинар­ного пограничного слоя к ядру турбулентного потока.

Для сушки характерно обратное направление теплового по­тока: от сушильного агента к поверхности твердого тела. Уравне­ние теплопередачи связывает между собой разность температур потока и поверхности тела с плотностью теплового потока:

где - коэффициент теплопередачи, ккал/(м2 ч °С);

UL;U0 - температура на стенке и в ядре потока, °С.

Рис. 3.17. Профиль температур при пере­носе теплоты от турбулентного потока к поверхности твердого тела через лами­нарный пограничный слой:UL- температура в ядре потока;U0- температура на поверхности тела

Для уяснения процессов кон­вективного теплообмена необхо­димо различать элементарные процессы (обтекание единичных тел) и сложные процессы (теп­лообмен в слое сыпучих мате­риалов, противо - и прямоток и т. д.).

Ламинарный пограничный слой, турбулентное ядро по­тока, теплопередача теплопро­водностью и турбулентным перемешиванием, так же как и массообмен в пограничном слое в прямом и обратном направлении, взаимосвязаны и оказывают друг на друга самые различные воздействия. Эти процессы можно описать с помощью балансовых уравнений обмена энергией и мас­сой. Для описания целесообразно ввести безразмерные критерии, которые связывают между собой многие физические и технологи­ческие параметры. Действительные физические зависимости с по­мощью таких критериев можно описать проще и нагляднее, отказавшись при этом от непосредственного использования фи­зических параметров, характеризующих процесс.

Излучение теплопередача излучением

Теплопередача излучением (например, при инфракрасном на­греве) происходит при переносе энергии. электромагнитными ко­лебаниями от одного тела другому. При этом в передаче энергии излучением не участвует ни твердый, ни жидкий, ни газообраз­ный носитель. В соответствии с законом Стефана-Больцмана энергия, излучаемая телом в окружающее пространство, про­порциональна его температуре (в градусах Кельвина) в четвертой степени:

q - плотность потока энергии излучения, каал/(м2·x);

С - коэффициент излучения тела;

Т - температура, К.

Если приблизить друг к другу два тела с разной температурой (рис. 3.21), то разность между поглощаемой и излучаемой энер­гией каждым из этих тел оценивается уравнением

Q = A1 С12[(Т 1 / 100)4 – (Т2 / 100)4] = A2 C21[(Т 1 / 100)4 – (Т2 / 100)4],

где Q - тепловой поток энергии излучения, ккал/ч; A1, A2 - излучающая поверхность тел 1 и 2; C12, C21 - коэффициенты излучения, ккал/[м2-ч (К/100)4]. Коэффициенты С12 или С21 исходя из представления коэффициен­тов излучения отдельных тел получа­ют из следующих уравнений:

1/С12 = 1/С1 + А1/А2 (1/С2 – 1/Сs) ;

1/С21 = 1/С2 + А2/А1 (1/С1 – 1/Сs) ;

Рис. 3.22. Плотность потока анергии из­лучения между телами, нагретыми до разной температуры (при С=4,0)

Рис 3.23. Распределение температур в керамической пластине при нагреве пото­ком инфракрасных лучей (по данным работы )

где Cs - коэффициент излучения абсолютно черного тела; Cs= 4,96 ккал/[м2-ч (К/100)4].

В таблицах нередко приводится значение относительной ха­рактеристики (табл. 3.10)

На рис. 3.22 показана зависимость плотности потока энергии излучения от температуры υ1 и υ2 в предположении, что С12 = С21 = 4 ккал/[м2-ч (К/100)4]. Из графиков видно, что при больших перепадах температур энергия излучения зависит лишь от температуры более горячего тела.

Особый интерес представляет процесс подвода теплоты с по­мощью излучения в сушильных установках, что обусловлено возможностью проникновения энергии излучения внутрь различ­ных сред. Глубина проникновения тепловых потоков при излу­чении зависит от вида материала и вида излучения. Для капил­лярно-пористых тел органического происхождения эта глубина равна 0,1-2 мм.

Вследствие того, что необходимая теплота высвобождается частично внутри тела, а не только на его поверхности, при опре­деленных условиях на поверхности плотность теплового потока может быть многократно увеличена.

Таблица 3.10 Степень черноты вещества по Шмидту

ВЕЩЕСТВО

Температура, °С

Степень черноты ε = C / Cs

Золото, серебро, медь полированные

полированная, слегка окисленная

обработанная наждаком

черненная (окисленная)

чисто отшлифованное

сильно окисленное

Глина обожженная

Лед гладкий, вода

Лед, шероховатая поверхность

По данным А. В. Лыкова плотность потока энергии, на­пример, можно увеличить с 750 ккал/(м2-ч) при конвекции до 22 500 ккал/(м2-ч) при излучении. На рис. 3.23 представлен в гра­фическом виде процесс нагрева тела с помощью энергии излуче­ния. Из графика отчетливо видно, что тепловая энергия вначале высвобождается только внутри тела, так как в противном случае максимум температуры должен был бы находиться на поверхности тела.

Контактный теплообмен

Контактный теплообмен наблюдается, когда два тела, имеющих в начальный момент времени различную температуру, приходят в соприкосновение друг с другом, в результате чего температура этих тел стремится к некоторой общей для них средней темпера­туре . На практике теплообмен такого рода можно встретить на нагретых или нагреваемых поверхностях при пересыпании, вибрации, скольжении высушиваемого материала.

В первый момент времени после соприкосновения двух тел, которые первоначально имели различную температуру, на поверхности их касания устанавливается средняя температура, обозначаемая U0. Величина называется тепловой активностью тела. При этом:

Среднее значение приведенного коэффициента теплоотдачи, отнесенное. к промежутку времени t и температурному перепаду U0-U∞ (где - U∞ - начальная температура холодного тела), рассчитывают по формуле.

При кратковременном контакте среднее значение приведенного коэффициента теплоотдачи может быть достаточно высоким.

Теплообмен при нагреве в переменном электромагнитном поле.

Если две металлические пластины, удаленные друг от друга на определенное расстояние, поместить в переменное электромагнитное поле, то между ними возникнет переменный ток, зависящий от напряженности поля и емкости

Рис 3.25. Изменение диэлектрической проницаемости в и тангенса угла диэлектрических потерь tgδ в зависимости от частоты f переменного электромагнит­ного поля и влагосодержания сосновой древесины (по данным работы )

Если между конден­саторными пластинами поме­стить материал, то емкостный ток возрастет пропорционально диэлектрической проницаемо­сти ε материала. Вода, содер­жащаяся в сельскохозяйствен­ных продуктах, по сравнению с их сухой массой имеет высо­кое значение диэлектрической проницаемости (при темпера­туре 0° С ε = 80), поэтому кон­станту е можно использовать для измерения влагосодержа­ния материала.

Чисто емкостный ток не вы­зывает разогрева влажного ма­териала. Сдвинутые по фазе токи внутри материала имеют также активную составляющую. Величина, выражающаяся отношением активной и емкостной составляющих, называется тан­генсом угла диэлектрических потерь:

IR - активная составляющая силы тока, А; IС - емкостная составляющая силы тока, A; U - действующее напряжение, В; R - активное сопротивление, Ом; w - круговая частота, 1/с; С - емкость, Ф; ε - диэлектрическая проницаемость; f - частота, Гц.

Выделение теплоты в материале обусловливается лишь актив­ной составляющей тока:

Если выразить напряжение через напряженность поля Е (напряжение, приходящееся на каждый сантиметр разделяющего пластины расстояния), то можно получить выражение, характе­ризующее мощность объемного тепловыделения:

Q - тепловыделение, ккал/ч; V - объем конденсатора, см3; Е - напряженность электрического поля, В/см.

Потери, определяемые tgδ, и диэлектрическая проницаемость е в значительной степени зависят - от влагосодержания материала и частоты изменения электромагнитного поля (рис. 3.25) . Уже при сравнительно небольшом влагосодержании оба упомяну­тых параметра значительно возрастают. Благодаря этому соз­даются необходимые условия для так называемой диэлектриче­ской сушки. При этом тепловыделения становятся особенно большими там, где влаги содержится больше всего. В результате в таких местах влага испаряется быстрее. Кроме того, в данном случае материал обезвоживается сначала изнутри, что имеет большое значение для предотвращения его разрушения от уса­дочных напряжений (при сушке дерева), наблюдаемых при обыч­ных способах сушки, когда материал высыхает вначале снаружи, а потом уже внутри.

При атмосферном давлении температура внутри влажного материала поднимается примерно до 100° С и остается постоянной на этом уровне. Если влага испаряется в таком большом коли­честве, что материал оказывается в гигроскопической области, то температура будет повышаться и далее. Вследствие этого сердце­вина материала может обуглиться, в то время как его наружные слои будут оставаться еще влажными.

Диэлектрическая, или высокочастотная сушка мало распро­странена не только лишь из-за больших капиталовложений и за­трат на высококвалифицированное обслуживание, но и вследствие большой энергоемкости процесса. Тепловая энергия, необходимая для испарения влаги, получается в результате преобразования электрической энергии, при этом преобразование энергии сопря­жено с заметными потерями.