Уравнение и его корни: определения, примеры. Уравнение


Получив общее представление о равенствах , и познакомившись с одним из их видов - числовыми равенствами , можно начать разговор еще об одном очень важном с практической точки зрения виде равенств - об уравнениях. В этой статье мы разберем, что такое уравнение , и что называют корнем уравнения. Здесь мы дадим соответствующие определения, а также приведем разнообразные примеры уравнений и их корней.

Навигация по странице.

Что такое уравнение?

Целенаправленное знакомство с уравнениями обычно начинается на уроках математики во 2 классе. В это время дается следующее определение уравнения :

Определение.

Уравнение – это равенство, содержащее неизвестное число, которое надо найти.

Неизвестные числа в уравнениях принято обозначать с помощью маленьких латинских букв, например, p , t , u и т.п., но наиболее часто используются буквы x , y и z .

Таким образом, уравнение определяется с позиции формы записи. Иными словами, равенство является уравнением, когда подчиняется указанным правилам записи – содержит букву, значение которой нужно найти.

Приведем примеры самых первых и самых простых уравнений. Начнем с уравнений вида x=8 , y=3 и т.п. Чуть сложнее выглядят уравнения, содержащие вместе с числами и буквами знаки арифметических действий, например, x+2=3 , z−2=5 , 3·t=9 , 8:x=2 .

Разнообразие уравнений растет после знакомства со – начинают появляться уравнения со скобками, например, 2·(x−1)=18 и x+3·(x+2·(x−2))=3 . Неизвестная буква в уравнении может присутствовать несколько раз, к примеру, x+3+3·x−2−x=9 , также буквы могут быть в левой части уравнения, в его правой части, или в обеих частях уравнения, например, x·(3+1)−4=8 , 7−3=z+1 или 3·x−4=2·(x+12) .

Дальше после изучения натуральных чисел происходит знакомство с целыми, рациональными, действительными числами, изучаются новые математические объекты: степени, корни, логарифмы и т.д., при этом появляются все новые и новые виды уравнений, содержащие эти вещи. Их примеры можно посмотреть в статье основные виды уравнений , изучающиеся в школе.

В 7 классе наряду с буквами, под которыми подразумевают некоторые конкретные числа, начинают рассматривать буквы, которые могут принимать различные значения, их называют переменными (смотрите статью ). При этом в определение уравнения внедряется слово «переменная», и оно становится таким:

Определение.

Уравнением называют равенство, содержащее переменную, значение которой нужно найти.

Например, уравнение x+3=6·x+7 – уравнение с переменной x , а 3·z−1+z=0 – уравнение с переменной z .

На уроках алгебры в том же 7 классе происходит встреча с уравнениями, содержащими в своей записи не одну, а две различные неизвестные переменные. Их называют уравнениями с двумя переменными. В дальнейшем допускают присутствие в записи уравнений трех и большего количества переменных.

Определение.

Уравнения с одной, двумя, тремя и т.д. переменными – это уравнения, содержащие в своей записи одну, две, три, … неизвестные переменные соответственно.

Например, уравнение 3,2·x+0,5=1 – это уравнение с одной переменной x , в свою очередь уравнение вида x−y=3 – это уравнение с двумя переменными x и y . И еще один пример: x 2 +(y−1) 2 +(z+0,5) 2 =27 . Понятно, что такое уравнение – это уравнение с тремя неизвестными переменными x , y и z .

Что такое корень уравнения?

С определением уравнения непосредственно связано определение корня этого уравнения. Проведем некоторые рассуждения, которые нам помогут понять, что такое корень уравнения.

Допустим, перед нами находится уравнение с одной буквой (переменной). Если вместо буквы, входящей в запись этого уравнения, подставить некоторое число, то уравнение обратиться в числовое равенство. Причем, полученное равенство может быть как верным, так и неверным. Например, если вместо буквы a в уравнение a+1=5 подставить число 2 , то получится неверное числовое равенство 2+1=5 . Если же мы в это уравнение подставим вместо a число 4 , то получится верное равенство 4+1=5 .

На практике в подавляющем большинстве случаев интерес представляют такие значения переменной, подстановка которых в уравнение дает верное равенство, эти значения называют корнями или решениями данного уравнения.

Определение.

Корень уравнения – это такое значение буквы (переменной), при подстановке которого уравнение обращается в верное числовое равенство.

Отметим, что корень уравнения с одной переменной также называют решением уравнения. Другими словами, решение уравнения и корень уравнения – это одно и то же.

Поясним это определение на примере. Для этого вернемся к записанному выше уравнению a+1=5 . Согласно озвученному определению корня уравнения, число 4 есть корень этого уравнения, так как при подстановке этого числа вместо буквы a получаем верное равенство 4+1=5 , а число 2 не является его корнем, так как ему отвечает неверное равенство вида 2+1=5 .

На этот момент возникает ряд естественных вопросов: «Любое ли уравнение имеет корень, и сколько корней имеет заданное уравнение»? Ответим на них.

Существуют как уравнения, имеющие корни, так и уравнения, не имеющие корней. Например, уравнение x+1=5 имеет корень 4 , а уравнение 0·x=5 не имеет корней, так как какое бы число мы не подставили в это уравнение вместо переменной x , мы получим неверное равенство 0=5 .

Что касается числа корней уравнения, то существуют как уравнения, имеющие некоторое конечное число корней (один, два, три и т.д.), так и уравнения, имеющие бесконечно много корней. Например, уравнение x−2=4 имеет единственный корень 6 , корнями уравнения x 2 =9 являются два числа −3 и 3 , уравнение x·(x−1)·(x−2)=0 имеет три корня 0 , 1 и 2 , а решением уравнения x=x является любое число, то есть, оно имеет бесконечное множество корней.

Пару слов стоит сказать о принятой записи корней уравнения. Если уравнение не имеет корней, то обычно так и пишут «уравнение не имеет корней», или применяют знак пустого множества ∅. Если уравнение имеет корни, то их записывают через запятую, или записывают как элементы множества в фигурных скобках. Например, если корнями уравнения являются числа −1 , 2 и 4 , то пишут −1 , 2 , 4 или {−1, 2, 4} . Допустимо также записывать корни уравнения в виде простейших равенств. Например, если в уравнение входит буква x , и корнями этого уравнения являются числа 3 и 5 , то можно записать x=3 , x=5 , также переменной часто добавляют нижние индексы x 1 =3 , x 2 =5 , как бы указывая номера корней уравнения. Бесконечное множество корней уравнения обычно записывают в виде , также при возможности используют обозначения множеств натуральных чисел N , целых чисел Z , действительных чисел R . Например, если корнем уравнения с переменной x является любое целое число, то пишут , а если корнями уравнения с переменной y является любое действительное число от 1 до 9 включительно, то записывают .

Для уравнений с двумя, тремя и большим количеством переменных, как правило, не применяют термин «корень уравнения», в этих случаях говорят «решение уравнения». Что же называют решением уравнений с несколькими переменными? Дадим соответствующее определение.

Определение.

Решением уравнения с двумя, тремя и т.д. переменными называют пару, тройку и т.д. значений переменных, обращающую это уравнение в верное числовое равенство.

Покажем поясняющие примеры. Рассмотрим уравнение с двумя переменными x+y=7 . Подставим в него вместо x число 1 , а вместо y число 2 , при этом имеем равенство 1+2=7 . Очевидно, оно неверное, поэтому, пара значений x=1 , y=2 не является решением записанного уравнения. Если же взять пару значений x=4 , y=3 , то после подстановки в уравнение мы придем к верному равенству 4+3=7 , следовательно, эта пара значений переменных по определению является решением уравнения x+y=7 .

Уравнения с несколькими переменными, как и уравнения с одной переменной, могут не иметь корней, могут иметь конечное число корней, а могут иметь и бесконечно много корней.

Пары, тройки, четверки и т.д. значений переменных часто записывают кратко, перечисляя их значения через запятую в круглых скобках. При этом записанные числа в скобках соответствуют переменным в алфавитном порядке. Поясним этот момент, вернувшись к предыдущему уравнению x+y=7 . Решение этого уравнения x=4 , y=3 кратко можно записать как (4, 3) .

Наибольшее внимание в школьном курсе математики, алгебры и начал анализа уделяется нахождению корней уравнений с одной переменной. Правила этого процесса мы очень подробно разберем в статье решение уравнений .

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения

Решение уравнения - задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

При подстановке другого корня получается неправильное утверждение:

.

Таким образом, второй корень нужно отбросить, как посторонний.

Виды уравнений

Различают алгебраические , параметрические , трансцендентные , функциональные , дифференциальные и другие виды уравнений.

Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней.

К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение , квадратное уравнение , кубическое уравнение и уравнение четвёртой степени . Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

Уравнение, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны.

В общем случае, когда аналитического решения найти не удается, применяют численные методы . Численные методы не дают точного решения, а только позволяют сузить интервал , в котором лежит корень, до определенного заранее заданного значения.

Примеры уравнений

См. также

Литература

  • Бекаревич, А. Б. Уравнения в школьном курсе математики / А. Б. Бекаревич. - М., 1968.
  • Маркушевич, Л. А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л. А. Маркушевич, Р. С. Черкасов. / Математика в школе. - 2004. - № 1.
  • Каплан Я. В. Рівняння. - Киев: Радянська школа, 1968.
  • Уравнение - статья из Большой советской энциклопедии
  • Уравнения // Энциклопедия Кольера. - Открытое общество. 2000.
  • Уравнение // Энциклопедия Кругосвет
  • Уравнение // Математическая энциклопедия. - М.: Советская энциклопедия. И. М. Виноградов. 1977-1985.

Ссылки

  • EqWorld - Мир математических уравнений - содержит обширную информацию о математических уравнениях и системах уравнений.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

  • Хаджимба, Рауль Джумкович
  • ЕС ЭВМ

Смотреть что такое "Уравнение" в других словарях:

    УРАВНЕНИЕ - (1) математическая запись задачи о разыскании таких значений аргументов (см. (2)), при которых значения двух данных (см.) равны. Аргументы, от которых зависят эти функции, называют неизвестными, а значения неизвестных, при которых значения… … Большая политехническая энциклопедия

    УРАВНЕНИЕ - УРАВНЕНИЕ, уравнения, ср. 1. Действие по гл. уравнять уравнивать и состояние по гл. уравняться уравниваться. Уравнение в правах. Уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке;… … Толковый словарь Ушакова

    УРАВНЕНИЕ - (equation) Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0. Решением является такие значения х, при котором данное уравнение становится тождеством. В… … Экономический словарь

    УРАВНЕНИЕ - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются неизвестными, а значения неизвестных, при которых значения функций равны,… … Большой Энциклопедический словарь

    УРАВНЕНИЕ - УРАВНЕНИЕ, два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение значит найти все значения неизвестных, при которых оно обращается в тождество, или установить … Современная энциклопедия

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного : линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Задачи на дифференциальное и интегральное исчисление являются важными элементами закрепления теории математического анализа, раздела высшей математики, изучаемой в вузах. Дифференциальное уравнение решается методом интегрирования.

Инструкция

Дифференциальное исчисление исследует свойства . И наоборот, интегрирование функции позволяет по данным свойствам, т.е. производным или дифференциалам функции найти ее саму. В этом и заключается решение дифференциального уравнения.

Любое является соотношением между неизвестной величиной и известными данными. В случае дифференциального уравнения роль неизвестного играет функция, а роль известных величин – ее производные. Кроме этого, соотношение может содержать независимую переменную:F(x, y(x), y’(x), y’’(x),…, y^n(x)) = 0, где x – неизвестная переменная, y(x) – функция, которую нужно определить, порядок уравнения – это максимальный порядок производной (n).

Такое уравнение называется обыкновенным дифференциальным уравнением. Если же в соотношении несколько независимых переменных и частные производные (дифференциалы) функции по этим переменным, то уравнение называется дифференциальным уравнением с частными производными и имеет вид:x∂z/∂y - ∂z/∂x = 0, где z(x, y) – искомая функция.

Итак, чтобы научиться решать дифференциальные уравнения, необходимо уметь находить первообразные, т.е. решать задачу, обратную дифференцированию. Например:Решите уравнение первого порядка y’ = -y/x.

РешениеЗамените y’ на dy/dx: dy/dx = -y/x.

Приведите уравнение к виду, удобному для интегрирования. Для этого умножьте обе части на dx и разделите на y:dy/y = -dx/x.

Проинтегрируйте:∫dy/y = - ∫dx/x + Сln |y| = - ln |x| + C.

Это решение называется общим дифференциального уравнения. С – это константа, множество значений которой определяет множество решений уравнения. При любом конкретном значении С решение будет единственным. Такое решение является частным решением дифференциального уравнения.

Решение большинства уравнений высших степеней не имеет четкой формулы, как нахождение корней квадратного уравнения . Однако существует несколько способов приведения, которые позволяют преобразовать уравнение высшей степени к более наглядному виду.

Инструкция

Наиболее распространенным методом решения уравнений высших степеней является разложение . Этот подход представляет собой комбинацию подбора целочисленных корней, делителей свободного члена, и последующее деление общего многочлена на вида (x – x0).

Например, решите уравнение x^4 + x³ + 2·x² – x – 3 = 0.Решение.Свободным членом данного многочлена является -3, следовательно, его целочисленными делителями могут быть числа ±1 и ±3. Подставьте их по очереди в уравнение и выясните, получится ли тождество:1: 1 + 1 + 2 – 1 – 3 = 0.

Второй корень x = -1. Поделите на выражение (x + 1). Запишите получившееся уравнение (x - 1)·(x + 1)·(x² + x + 3) = 0. Степень понизилась до второй, следовательно, уравнение может иметь еще два корня. Чтобы найти их, решите квадратное уравнение:x² + x + 3 = 0D = 1 – 12 = -11

Дискриминант – отрицательная величина, значит, действительных корней у уравнения больше нет. Найдите комплексные корни уравнения:x = (-2 + i·√11)/2 и x = (-2 – i·√11)/2.

Другой метод решения уравнения высшей степени – замена переменных для приведения его к квадратному. Такой подход используется, когда все степени уравнения четные, например:x^4 – 13·x² + 36 = 0

Теперь найдите корни исходного уравнения:x1 = √9 = ±3; x2 = √4 = ±2.

Совет 10: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс превращения веществ, протекающий с изменением их состава. Те вещества, которые вступают в реакцию, называются исходными, а те, которые образуются в результате этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав исходных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в другом случае меняется их заряд. Такие реакции называются окислительно-восстановительными.

Учебник: Математика: Учеб. для 5 кл. общеобразоват. учреждений / Н.Я.Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: Мнемозина, 1997 и последующие.

Цели урока:

  • обучение работе в группах, формирование навыков общения “учитель – ученик”, “ученик – ученик”;
  • формирование навыков математической речи, контроля и самоконтроля;
  • обучение работе с учебником;
  • проверка знаний теоретического и практического материала при решении уравнений с помощью компонентов.

Подготовка к уроку:

  • разбить учащихся класса на группы по 4-5 человек так, чтобы в каждой группе были обучающиеся разных уровней;
  • расстановка парт в классе таким образом, чтобы отдельно друг от друга могли работать пять групп по 4-5 человек в каждой;
  • подготовка дидактического материала:

а) карточки с вопросами к зачету (для каждого ученика):

б) лист самопроверки (один на группу):

в) оценочный лист (один на группу):

Фамилия, имя

оценка

ХОД УРОКА

I. Проверка домашней работы (фронтально).

– Что называется уравнением?
– Что значит решить уравнение?
– Что называется корнем уравнения?

Проговорить решение домашних уравнений (№ 395):

Уравнение Образец устного ответа
а) 395 + x = 864,
x = 864 – 395,
x = 469.

Ответ: 469

395 + x = 864.

Чтобы найти неизвестное слагаемое,
надо из суммы вычесть известное слагаемое.
Корень уравнения – 469.

в) 300 – y = 206,
y = 300 – 206,
y = 94.

Ответ: 94

300 – y = 206.

Чтобы найти неизвестное вычитаемое,
надо из уменьшаемого вычесть разность.
Корень уравнения – 94.

д) 166 = m – 34,
m = 166 + 34,
m = 200.

Ответ: 200

166 = m – 34.

Чтобы найти неизвестное уменьшаемое,
надо сложить вычитаемое и разность.
Корень уравнения – 200.

II. Работа в группах

Каждый ученик в группе решает уравнение индивидуально. На теоретические вопросы один ученик в группе отвечает учителю, второй – ученику, который уже ответил, третий – второму и т.д. Во время ответа заполняется “оценочный лист”. Если ученик отвечает правило без учебника, то напротив его фамилии в оценочном листе проставляется “+”, если отвечает с помощью учебника, то “”. При ответе ученика проверяющий, который нетвердо знает правило, пользуется листом самопроверки. Решение уравнений проверяет учитель, и общая оценка выставляется после того, как проверены все задания.

Критерии оценки:

  • оценка “5” выставляется в том случае, если ученик проговорил все правила без помощи учебника и решил все уравнения без ошибок;
  • оценка “4” выставляется в том случае, если ученик при устном ответе обратился к учебнику не более одного раза, допустил при решении уравнения не более одной ошибки;
  • оценка “3” ставится в том случае, если ученик отвечал правила по учебнику, при решении уравнения сомневался в применении правил на нахождение компонентов.

III. Итог урока: оценки каждому ученику.

IV. Домашнее задание: № 396.


















Корни уравнения не изменяются, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак. 3х – 8 = х – 14 3х –х = х = -6 х = -3












Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Решение логарифмического уравнения вида основано на том, что такое уравнение равносильно уравнению f(x)=g(x) при дополнительных условиях f(x) Согласно определению логарифма,




0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" class="link_thumb"> 23 Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения: 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения:"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р">






















Тригонометрическое уравнение вида все члены которого имеют одну и ту же степень относительно синуса и косинуса, называется однородным. Однородное уравнение легко сводиться к уравнению относительно, если все его члены разделить на. При этом если, то такое деление не приведет к потере решений, поскольку значение не удовлетворяет уравнению. Если же, то выносится за скобки.


Уравнение вида равносильно уравнению,где Наиболее часто применяется метод, состоящий в том, что все члены уравнения, состоящие в правой части, переносятся в левую часть; после чего левая часть уравнения разлагается на множители, при этом применяются формулы разложения тригонометрических функций в произведение, формулы понижения степени, формулы преобразования произведения тригонометрических функций в систему.




Иррациональные уравнения Уравнения, содержащие один знак радикала второй степени -В-Возведение обеих частей уравнения в степень. При возведении обеих частей уравнения в четную степень, получается уравнение, неравносильное исходному. Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляют в начальное уравнение и проверяют, верно ли получается числовое равенство.


Равенство нулю произведения(частного) двух выражений. Произведение двух выражений равно нулю, если хотя бы одно из выражений равно нулю, а другое при этом имеет смысл. Формально это записывается так: Формальная запись частного от деления двух выражений равных нулю:




Уравнения, содержащие два(три) знака радикала второй степени Возведение в квадрат обеих частей уравнения. Сначала уравнение нужно преобразовать так, чтобы в одной части стояли радикалы, а в другой- остальные члены исходного уравнения. Так поступают, если в уравнении два радикала. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования. Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал(теперь он один!)-в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.







Уравнения, содержащие радикалы третьей и более высоких степей. При решении уравнений, содержащих радикалы третьей степени, бывает полезно пользоваться следующими тождествами: Решить уравнение: Решение: Возведем обе части этого уравнения в третью степень и воспользуемся выше приведённым тождеством: Заметим, что выражение, стоящее в скобках, равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим: Раскроем скобки, приведем подобные члены и решим квадратное уравнение. Его корни х=5 и х=-25/2. Если считать (по определению), что корень нечетной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения. Ответ:5,-25/2


Уравнение с параметром При каких значениях а уравнение имеет два корня, один из которых больше 1, а другой меньше? Решение: Рассмотрим функцию: и построим эскиз её графика. При а=0 функция становится линейной и двух пересечений с осью Ох(корней уравнения у=0) иметь не может. При а>0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а 0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а">


Графический способ решения систем уравнений Система уравнений состоит из двух или более алгебраических уравнений. Решение системы называется такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество. Решить систему - значит найти все её решения или доказать что их нет.


Графическое решение систем Графический способ решения систем уравнений состоит в следующем: Строятся графики каждого уравнения системы; Определяются точки пересечения графиков; Записывается ответ: координаты точек пересечения построенных графиков. Графический способ решения систем уравнений в большинстве случаев не дает точного решения системы, однако он может быть полезен для наглядной иллюстрации рассуждений.




Равносильность уравнений Равносильными (эквивалентными) уравнения называются в том случае, если все корни первого уравнения являются корнями второго уравнения, а все корни второго уравнения – корнями первого. Равносильные преобразования уравнения – это преобразования, приводящие к равносильному уравнению: 1)Прибавление одновременно к обеим частям уравнения любого числа (в частности, перенос слагаемых из одной части уравнения в другую с изменением знака) 2) Умножение (и деление) обеих частей уравнения одновременно на любое число, отличное от нуля. Кроме того, для уравнений в области действительных чисел: 3) Возведением обеих частей уравнения в любую нечетную степень 4) Возведение обеих частей уравнения при условии, что они неотрицательны, в любую четную натуральную степень



Показательные уравнения. Показательным называют уравнение, в котором неизвестное входит только в показатели степеней при постоянных основаниях. Показательное уравнение вида равносильно уравнению Имеются два основных метода решения показательных уравнений: 1)приведение уравнения к виду,а затем к виду; 2) введение новой переменной. Пример: Решим уравнение:


Список используемой литературы: Д.И.Аверьянов – «Большой справочник для поступающих в ВУЗы» 1998г. В.К.Егерев- «Сборник задач по математике для поступающих в ВУЗы под редакцией М.И.Сканави». 1997г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 8 класс.» 2003г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 9 класс.» 2003г.


Презентацию подготовили: Шманова Виктория Деева Александра 11 класс МОУ «СОШ 1» г. Шумиха 2007г. подробная информация по тел