Восточно-Европейская платформа. Тектоническая схема


Восточно-Европейская платформа отличается довольно высокой степенью изученности, прежде всего осадочного чехла. Достаточно хорошо известен рельеф поверхности фундамента Русской плиты, а также рельеф поверхности Мохровичича в её пределах. В основном выявленной можно считать сложную систему палеорифтов-авлакогенов в фундаменте платформы. Однако все еще отсутствует достаточно обоснованная схема внутреннего строения фундамента Русской плиты. Объясняется это крайней недостаточностью радиометрических датировок, вынуждающей всецело опираться на петрографический облик пород и распределение магнитных и гравитационных аномалий.

Восточно-Европейская платформа (ВЕП) представляет собой кратон, т.е. платформу с древнейшим архей-раннепротерозойским фундаментом, консолидация которого произошла в раннем протерозое, около 1,6 млрд. лет назад. ВЕП является тектонотипом древних платформ.

В её строении выделяют:

1.фундамент архей-раннепротерозойский (Аzch – Pzt 1) ,

2.проточехол раннепротерозойский (Pzt 1 – 900-1650 млн. лет),

3. ранний этап развития (авлакогеновый) – рифей-середина венда,

4.платформенный чехол (венд-кайнозой) – плитный этап. В нем различают циклы: каледонский (венд – ранний палеозой), герцинский (средний и поздний палеозой), альпийский (мезозой-кайнозой).

Каждой стадии развития соответствует комплекс пород, сформи ровавшийся в соответствующие геотектонические этапы развития Восточно-Европейской платформы.

Границы платформы:

ВЕП имеет угловатые очертания, обусловленные рифтогенезом. В поперечнике она имеет около 3000 км. Граница её проходит:

на северо-западе в 200 км северо-западнее линии надвига каледонид, перекрывающих балтийский щит более чем на 200 км на юго-восток. На геологических картах видно, что примерно до такого расстояния прослеживаются в каледонской складчатости в тектонических окнах фундамент (породы архея-нижнего протерозоя);

на северо-востоке от фиорда Варангер до Полюдова камня ВЕП ограничивают байкалиды Варангер-фиорда, полуостровов Рыбачьего и Канина и поднятия Тимана. Они также надвинуты на ВЕП;

на востоке граница проходит по герцинскому Предуральскому краевому прогибу по переднему фронту надвигов Урала от Полюдова камня на юг по Уфимско-соликамскому прогибу до поднятия Кара-тау, от него по Бельскому прогибу на юг и далее через Урало-Эмбинские поднятия до полуострова Бузачи;

на юге граница идет по Донецко-Астраханскому разлому через дельту Волги и середину Цимлянского водохранилища; огибает герцинский складчатый Донбасс и по системе Волновахских разломов вновь идет на восток до окончания Сальского выступа Украинского кристаллического щита (УКЩ). Огибает его с юга и идет на запад через Ейский полуостров, Сивашский прогиб (гнилое море Сиваш и Перекопский перешеек), по Каркинитским разломам (по Черному морю);

на юго-западе на ВЕП надвинут альпийский Предкарпатский краевой прогиб, граница проходит примерно в 70 км к западу от линии надвига внутри аллохтона до каледонского Свентокшишского поднятия в герцинидах Польши;

на северо-запад от Свентокшишского поднятия граница идет по разлому к мысу Ставангер (на западе Скандинавии) – так называемая линия Торнквиста-Тейссйра.

Земная кора ВЕП континентального типа. В ней выделяются осадочный слой мощностью от 0 до 5км (в Прикаспийской структуре 20-25 км), гранито-гнейсовый слой – от 10 до 20 км (в Прикаспийской структуре отсутствует), гранулито-базитовый слой 20-35 км (в Днепрово-Донецком авлакогене он сокращается до 10-15км). В сверхглубокой Кольской скважине граница Конрада не обнаруживается, т. к. здесь она представляет собой разуплотненный слой тех же пород. Глубина залегания поверхности Мохоровичича от 27-30 до 60-65 км (на большей части площади ВЕП глубина залегания поверхности Мохо 35-50 км). Тепловой поток составляет в среднем 30-40 мВт/м 2 , на УКЩ и в Днепрово-Донецкой впадине до 50 мВт/м 2 .

Тектоническое районирование Восточно-Европейской платформы.

В пределах платформы выделяют щиты Балтийский и Украинский и Русскую плиту, закрытую осадочным чехлом палеозойских, мезозойских и кайнозойских осадков.

Тектоническое районирование фундамента ВЕП.

Балтийский щит, Украинский щит, поднятия-мегаблоки Волго-Уральской, Воронежской, Мазурско-Белорусской антеклиз. Фундамент рассекают авлакогены Средне-Русский, Кировско-Кажимский, Камско-Бельский (Калтасинский), Сергиевско-Абдулинский, Пачелмский, Московский, Припятско-Днепрово-Донецкий, Керецко-Лешуконский (у Мезенского прогиба), Кандалакшский, Ладожский, Клинцовский (Крестцовский). В.В.Ишутин установил в основании Восточно-Русской впадины наличие единой Баренцево-Каспийской меридиональной системы рифтов.

Тектоническое районирование Русской плиты (чехла ВЕП).

Антеклизы Белорусская, Воронежская, Волго-Уральская; выступы-своды Ветреного пояса (между Кандалакшским авлакогеном и Онежским озером), также Архангельский, Оренбургский, Ратновский; синеклизы Московская, Балтийская, Мезенская; прогибы на авлакогенах Крестцовско-Оршанский, Пачелмский, впадины Брестская, Львовская, Бузулукская, Литовско-Латвийская; впадины Прикаспийская, Днепровско-Донецкая, Балтийская моноклиналь; Днестровский перикратонный прогиб.

Своеобразной структурной формой являются ударные и взрывные кольцевые структуры. Общим для них является округлая впадина, выполненная толщей агломератов (иногда мощностью до 1км) и импактитов. Наиболее известные из них Каменская (позднемеловая), Пучеж-Катунская (раннеюрская, диаметром 100 км, у г.Горького), Винницкая (меловая, два кратера диаметром 4 км и 1 км), Калужская (пермская, диаметром 15км), на о Саарема (четвертичные, диаметром от 16 до 20 метров, окружены валами высотой 6-7м), самая древняя Карельская (возраст более 1 млрд лет, диаметр 20км).

Фундамент Восточно-Европейской платформы

Возраст фундамента (время консолидации) раннепротерозойский. Наиболее изучены щиты, наименее склоны антеклиз и синеклизы.

В рельефе поверхности фундамента выделяются щиты, поднятия-мегаблоки (антеклизы) и палеорифты-авлакогены. Все эти элементы были названы выше.

Балтийский щит (в пределах России Карело-Кольский геоблок). Поверхность его расположена на высоте 0,5-1 км над уровнем моря. Расчленяется на геологические мегаблоки Северо-Кольский (Мурманский и Кольский), Беломорский, Карельский, Свекофенский. На западе прослежена зона высокотемпературного метаморфизма – Лапландско-Беломорский гнейсо-гранулитовый пояс. Установлено омоложение слагающих БЩ образований с востока на запад и последовательное надвигание молодых блоков на древние.

Восточная граница БЩ погружается под чехол и оконтуривается полосой блоковых смещений фундамента. На юге расположена Ладожско-Мезенская зона блоковых структур активизации. На севере тиманиды надвинуты на докембрий в виде чешуй верхнего протерозоя.

Северо-Кольский (Кольский и Мурманский) блок сложен плагио-микроклиновыми гнейсами (возраст>2,8 миллиарда лет) и разновозрастными гранитами с реликтами древнейших амфиболитов. Гнейсы собраны в изоклинальные складки, среди которых встречаются гнейсовые купола. Выше располагается кольская серия нижнепротерозойских двуслюдяных, биотитовых гнейсов, амфиболитов, железистых кварцитов. На них залегают менее метаморфизованные и слабо дислоцированные породы верхов нижнего протерозая.

Северо-Кольский блок с юга отделен от Беломорского Лапландско-Беломорским гнейсо-гранулитовым поясом, по которому первый надвинут на второй. Это полоса до 15 км шириной с крупными массивами габбро и бластомилонитами (в Финляндии эта зона надвигов с линзами и массивами ультросновных пород). Роль этого пояса в структуре Балтийского щита до сих пор не выяснена. Финские и норвежские геологи предложили модель, по которой его заложение происходило в результате рифтогенеза и формирование его структуры в условиях коллизии Центрально-Кольского и Карельского блоков. Эта схема вполне вероятна и подтверждается рядом фактов, но существование и последующее закрытие бассейна океанического типа на кратоне пока ничем не подтверждается.

Беломорский блок сложен древнейшими дислоцированными породами, объединенными в структурный этаж–беломориды. Выделяют нижний и верхний комплексы пород. Нижний комплекс – ранний (нижний) архей (2,85 миллиарда лет). Сложен породами фации гранулитового метаморфизма, чарнокитами, мигматитами, гиперстеновыми долеритами. Верхний комплекс – сложен плагиоклазовыми и плагиоклаз-микроклиновыми гранитами, метаморфическими породами амфиболитовой фации. Возраст – поздний (верхний) архей (2,7 миллиарда лет).

Карельский блок сложен в основном карелидами (Рztz 1). В основании лежит нижнеархейский лопийский комплекс – кристаллические образования со свекофенскими гранитоидами. На юге Карелии архейский фундамент отсутствует. Для карелид характерен петельчато-мозаичный структурный план (глубинный диапиризм на фоне многократных деформаций).

Украинский щит. С севера ограничен Припятско-Донецкой системой разломов (Волновахские и Припятские разломы), на юге системой разломов Белгородский, Каркинитский, Главный Азовский. По возрастному и петрографическому критерию выделяются мегаблоки Волыно-Подольский, Кировоградский, Приднепровский, Приазовский. Более молодые (омоложенные) блоки Кировоградский и Приазовский надвинуты на промежуточный Приднепровский.

Архейские толщи слагают массивы Подольский, Приднепровский, Приазовский. Возраст их 3,1-3,0 миллиарда лет – это мигматиты и граниты; более молодые (2,8-2,7 миллиарда лет) – пироксеновые сланцы и гнейсы с телами метабазитов, кварцевые диориты, граниты, аплито-пегматоидные граниты. В Приднепровском массиве распространены узкие сжатые слинлинории, в Волыно-Подольском и Приазовском преобладают гнейсовые купола.

Для Приазовского массива хорактерны щелочные интрузии возрастом 1,7 миллиарда лет, (сиениты, субщелочные граниты, сиенитовые пегматиты, калиевые микроклиновые граниты). В структуре массива выделяется Центрально-Приазовский синклинорий¸ сложенный субмеридиональной десятикилометровой мощности толщей центрально-приазовской серии – терригенными породами в амфиболитовой фации, сменяющиеся вверх по разрезу вулканогенными образованиями-метаамфиболитами.

Кировоградский массив сложен энсиалической раннепротерозойской толщей Курско-Криворожской складчатой системы (синклинории Саксаганский и Криворожский). В основании разреза залегает зеленокаменная толща, вверху сланцево-джеспилитовая толща с магнетитовыми и гематитовыми рудами. Саксаганский синклинорий узкий, наклонен на восток и обрезан глубинными разломами на западе.

Крупнейший Коростеньский интрузивный массив представляет собой лакколит, сложенный анортозитами (лабрадоритами), габбро-норитами, по периферии гранитами-рапакиви.

Основные глубинные поперечные разломы рассекающие УКШ: Криворожско-Кременчугский, Орехово-Павлоградский.

Русская плита

Площадь её 4 млн. км 2 . Границы определены полем распространения палеозойских, мезозойских и кайнозойских отложений. Тектоническое районирование приведено выше.

Воронежская антеклиза (ВА). Её границы. Разделяется на Сумский, Курско-Белгородский и Воронежский блоки. На востоке антеклиза осложнена Доно-Медведецким валом (авлакогеном). Фундамент расположен на отметке +100 м. Северное крыло пологое. Здесь фундамент постепенно погружается до глубины 1250 м, а на юге и юго-западе он уже на глубине > 4-5 км. Раннеархейские структуры имеют северо – северо-северозападное простирание, пронизаны массивами мигматитов плагиогранитового состава. В них раннепротерозойские троги, напоминающие прогибы криворожской серии нижнего протерозая. Внизу это сланцево-кварцитовая толща; выше рудные гематит-магнетитовые кварциты. Докембрий перекрыт известняками девона, минимальной мощностью в своде антеклизы 60-80м.

Белорусская антеклиза (БА). Границы. Западное крыло антеклизы срезается меридиональным разломом, фундамент здесь погружается до 8-10 км. На своде фундамент лежит на отметках +85, -250.Крылья антеклизы под чехлом сложены рифеем, в своде лежит средний палеозой, все перекрыто мезозойским чехлом. В верховых р. Неман на архее лежат четвертичные отложения. Архей представлен чарнокитовыми мигматитами, амфиболитами, габброидами и гранитами.

Волго-Уральская антеклиза (ВУА). Границы. Это поднятие, состоящее из массивов миндалеобразной кофигурации архейской консолидации с телами базитов и гранитов, залегающих на глубинах на поднятиях от 1 км до 2-3 км, во впадинах от 4-5 км до 9 км.

Тектоническое районирование антеклизы. Выделяются Татарско-Токмовский, Волго-Вятский и Жигулевско-Пугачевский мегаблоки. От Татарского свода на север простирается Коми-Пермяцкий свод. От Токмовского свода на север отходит Котельническое и Сысольское поднятие (Сыктывкарский свод). Коми-Пермяцкий и Сыктывкарский своды образуют Волго-Вятский мегаблок. На юге антеклизы расположена Жигулевско-Пугачевская зона поднятий.

Токмовский свод осложнен Окско-Цнинским и Сурско-Мокшинским валами. Фундамент рассечен Казанско-Сергиевской системой авлакогенов (Калтасинский, Кировский, Кажимский, Казанский, Сергиевский), на которую наложены Сергиевский, Кажимский прогибы. Камско-Бельский прогиб на Калтасинском авлакогене. Мелекесский (Бузулукский) прогиб на Абдулинском авлакогене отделяет от Татарского и Токмовского сводов Жигулевско-Пугачевскую зону поднятий.

В рифее-раннем палеозое антеклиза представляет собой поднятие в составе Сарматского щита. С середины девона с расколом щита Припятско-Днепровско-Донецким авлакогеном антеклиза погружается на 1,5-3км, в перми происходит поднятие в связи с герцинским орогенезом на Урале, накапливаются континентальные и лагунные отложения. Структура перестает существовать.

С юго-запада ВУА ограничена Пачелмским прогибом, отделяющим её, от Воронежской антеклизы. Прогиб заложился на Пачелмском авлакогене. Длина его 700км, ширина 60-100км, мощность отложений составляет 3-5км, в том числе 2км рифея. В раннем палеозое прогиб входил в состав Сарматского щита, с распадом щита в среднем девоне на его месте возник Рязано-Саратовский прогиб и с позднего девона он перестает существовать как структура.

Московская синеклиза. Как структура проявилялась с венда-раннего палеозоя до позднего палеозоя. Границы: Московская синеклиза отделена Великоустюгской седловиной от Мезенской синеклизы; на западе ограничена Крестцовским (Валдайским) авлакогеном.. На востоке – Волго-Уральская антеклиза. На севере Кандалакшский, Яренский (СВ простирания), Онежский, Пинежский, Нижнемезенский, Притиманский авлакогены. Складчатое сооружение Тимана надвинуто с северо-востока. Заложена на Среднерусской системе авлакогенов (Гжатском, Солигаличском, Сухонском).

Синеклиза прогибалась в рифее и в палеозое-мезозое. Мощность рифея 2,7 км (скважина к югу от Москвы на глубине 4783 м не вышла из отложений рифея), мощность нижнего палеозоя 0,5км, среднего и верхнего более 1км. Мезозой составляет всего 0,3 км.

В раннем кембрии в синеклизе накапливались глины, алевролиты. Далее до среднего девона территория вышла из режима осадконакопления. С середины девона до турне накапливались терригенно-карбонатные отложения, известны бурые угли (Подмосковный бассейн). В конце мела область окончательно вышла из режима осадконакопления.

Прибалтийская синеклиза. Глубина залегания фундамента 5-6 км. Выполнена отложениями нижнего палеозоя.

Припятско-Днепрово-Донецкий прогиб. Заложился на одноименном авлакогене с середины девона, как прогиб существовал до раннего триаса. В девоне сформировалась своеобразная эвапарито-вулканогенная формация.

Украинская синеклиза. Существовала только в мелу. Выполнена формацией писчего мела мелового возраста.

Прикаспийская структура (впадина, синеклиза, перикратонный прогиб). Отличают уникально большая мощность осадков, гигантское соленакопление, отсутствие гранито-гнейсового слоя коры. Изучена методом МОГТ (метод общей глубинной точки) и газопоисковым бурением. По геофизическим данным в центре структуры под осадочным слоем находятся толеитовые базальты.

На северо-западе фундамент расположен на глубине до 3 км, но по системе флексур и разломов погружается к центру структуры на глубину 15-25 км, где из разреза выпадает гранито-гнейсовый слой. На севере выделяется уступ фундамента – Волгоградско-Оренбургский – высотой до 2-3 км. На востоке глубинный разлом отделяет синеклизу от Мугоджар и Урало-Эмбинских поднятий. На северо-востоке структуры известны своды Хобдинский (Северо-Прикаспийский), на востоке Аралсорский (Восточно-Прикаспийский), на юго-западе Астраханское сводовое поднятие. Все эти структуры выделяются под подсолевым комплексом, поэтому глубина кровли сводов 7-9 км, только Астраханского – 4км. На юго-западе выделяется Каракульский краевой прогиб с двумя конусами выноса с юго-запада.

Впадина выполнена толщей рифея и фанерозоя. В ней выделяются нижний и верхний подсолевые комплексы.

Нижний подсолевой комплекс представлен мощными отложениями рифея–нижнего палеозоя (7км). Эта карбонатно–доломитовые и терригенные отложения.

Верхний подсолевой комплекс имеет мощость 10 км и включает интервал от среднего девона до артинского яруса нижней перми. Распространен по всей территории впадины. По западному и северному бортам впадины протягивается барьерный риф. Высота рифа до 1700 м, в стратиграфическом разрезе он продвинут к центру впадины на 50 км и сменяется глубоководными карбонатно-глинистыми отложениями.

Эвапоритовый комплекс имеет мощность 3 км. Возрастные границы от ранней перми (кунгурское время) до поздней перми (казанское время). Соли образует купола диаметром до 100 км. На глубине 1-1,5 км они соединяются в протяженные гряды. По А.Л.Яншину соленакопление шло на больших глубинах в условиях некомпенсированного прогибания бассейна. За 10 млн. лет накопились мощные толщи соли, после чего бассейн заполнился обломочными осадками и превратился в эпиконтинентальную впадину. Прогибание продолжается до сих пор.

В подсолевом комплексе выявляются нефтегазовые конденсатные месторождения, связанные с рифогенными ловушками. Высокоамплитудные рифы обычно располагаются на крупных тектоноседиментационных структурах-мегавалах (длина их до 200 км, ширина до 60 км). Они располагаются в прибереговых частях впадины.

Надсолевой комплекс представлен мощными терригенными отложениями мезозоя и кайнозоя, которые прорываются куполами солей эвапоритового комплекса. В юрских и меловых отложениях вокруг конседиментационных куполов и диапиров имеются залежи углей. На Астраханском своде обнаружено газоконденсатное месторождение в карбонатных породах среднего карбона. В газе 58% углеводородов (высокое содержание конденсата!), 24% Н 2 S и 18 % СО 2 . В настоящее время на российской и кзахстанской частях структуры выявлены новые крупные месторождения газа.

Прикаспийская структура представляет собой особый тип структур – перикратонные прогибы, формирующиеся на стыке разновозрастных складчатых поясов и древних платформ.

Основные этапы геологического развития Восточно-Европейской платформы.

Этап консолидации фундамента

На протяжении архея и раннего протерозоя формировались древнейшие блоки фундамента, сложенные саамским и лопийским комплексами пород архейского возраста и нижнепротерозойским карельским комплексом. Развитие континентальной коры в каждую из этих эпох, соответствующую комплексам, завершалось орогенезом (диастрофизмом) и гранитообразованием.

Строение блоков однотипно. Рассмотрим пример Приднепровского блока УКЩ:

1.На его площади преобладают гранито-гнейсовые купола высокометаморфизованных пород, между которыми располагаются зеленокаменные пояса. Купола имеют диаметр 40-60 км, иногда они сгруппированы в оваловидные структуры длиной более 100 км. В ядрах куполов мигматизированные породы – тоналиты (семейство гранитоидов с содержанием кварца >20%, биотита и роговой обманки до 30%, полевой шпат представлен плагиоклазом). В куполах обычны гранулиты, имеющие гнейсовидную структуру (полевошпатовый состав, с кварцем или без, характерен гранат), чарнокиты (кварца 20-50%, калий-натровые полешпаты, темноцветы представлены гиперстеном, гранатом, диопсидом, биотитом), эндербиты (плагиоклазовые чарнокиты). Эти породы объединяются в серые гнейсы. Возраст серых гнейсов УКЩ – 3,7 миллиардов лет (катархей), на Балтийском щите – 3,1 миллиарда лет (архей). В серые граниты обычно включены метабазиты (спилиты – измененные базальты с вторичными альбитом, хлоритом, эпидотом) и ультрабазиты.

2. Межкупольные пространства заняты зеленокаменными поясами. Это причудливые полосы шириной до 10-15 км и 30-100 км по простиранию. Породы поясов деформированы в изоклинальные складки. Низы разреза сложены основными эффузивами спилит–диабазового состава, иногда сильнометаморфизованные. Содержат пачки железистых кварцитов, в Карелии описаны ультроосновные лавы. В верху разреза кислые эффузивы, кератофиры и фельзиты с прослоями кварцитовидных песчаников и гравелитов. Среди них наблюдаются межпластовые тела серпентинитов, перидотитов, габбро-норитов.

Низы разреза архея (беломориды) относятся к саамскому комплексу, а верхи к лопийскому. Верхний саамий известен кроме Балтийского щита в Жигулевско-Пугачевском своде, на УЩ в Волыно-Подольском и Приазовском блоках. Лопийский комплекс обнажен в Кольском и Карельском блоках, на УКЩ на Волыно-Подольском, Приднепровском и Приазовском блоках, в центральной части Воронежского массива. Комплексы разделены саамским диастрофизмом (3400 миллионов лет), разделившим ранне- и позднеархейские эпохи.

На границе архея и протерозоя произошла ребольская фаза складчатости (2 600 – 2 900 миллионов лет), подвергшая метаморфизму и деформациям кольскую и беломорскую серии пород, пронизанных гранитными и тоналитовыми интрузиями. К концу архея были созданы блоки с континентальной корой Мурманский, Кольский, Беломорский, Карельский, Волыно-Подольский, Кировоградский, Приднепровский, Приазовский.

Раннепротерозойские серии (карельский комплекс–карелиды) известны везде, кроме Беломорского и Мурманского блоков. На УКЩ это криворожская серия, состоящая из трех свит: нижней–обломочной (песчаники, конгломераты, филлиты, графитовые сланцы, вулканиты-амфиболиты), средней–ритмичное чередование джеспилитов и кремнистых пород и верхней–терригенной.

В Карельском блоке нижний протерозой представлен сумийским комплексом. Это метаморфические вулканические породы и вверху обломочные. Сумий известен вдоль Восточно-Карельской шовной зоны.

В Кольском блоке серия кейв выполняет кейвский синклинорий. Это высокоглиноземистые породы, источником, которых являлась кора выветривания.

Завершается ранний протерозой свекокарельской (свекофенской) складчатостью, консолидировавшей фундамент 1 800-1900 миллионов лет назад.

Протоплатформенный чехол.

После свекофенской складчатости формируется протоплатформенный чехол. Первый осадочный платформенный чехол в Карельском блоке слагают породы ятулийского комплекса. Аналоги известны в Приднепровском блоке. В Карелии в основании разреза – коры выветривания, выше залегают конгломераты, аркозы, кварциты и у Онежского озера морские карбонатные толщи (в их верхах встречены шунгиты). Чехол образует плоские широкие синклинали, часто покровно-надвигового строения. В ятулийскую эпоху происходит стабилизация континентальных массивов.

1,9-1,8 миллиардов лет назад на всей территории платформы происходит внедрение калиевых гранитов. Позже (1,65-1,55 миллиардов лет) внедрялись интрузии гранитов–рапакиви (выборгский эпизод орогенеза), в то же время появились первые щелочные интрузии, а также щелочно-ультроосновные породы с карбонатитами Приазовского блока.

Раннерифейский этап – авлакогеновый. Длительность этапа до 1 миллиарда лет. После внедрения гранитов-рапакиви формируется нижнерифейский платформенный чехол. Это иотнийские песчаники Балтийского щита, овручские песчаники УКЩ, кварцитовидные песчаники ВУА. В разрезах характерны силлы диабазов.

В конце раннего рифея происходило растяжение молодого фундамента и закладка сети палеорифтов-авлакогенов. На протяжении всего среднего рифея они разбивают фундамент на серию блоков, соответствующих щитам и массивам. Происходит перестройка структурного плана платформы. Гигантские грабены рассекли ВЕП на возвышенные западную и восточную части. Выделились Балтийский щит и Сарматская зона поднятий или Сарматский щит (включающий современные БМ, УКЩ, ВА, Пачелмский прогиб, ВУА).

Грабены выполнены мощными красноцветами и вулканогенными толщами среднего рифея В основании толщи до 400 м лавовых покровов базальтов, диабазов, туфов, силлов долеритов. В районе Кандалакши известны ультро-основные интрузии с трубками взрывов.

Верхний рифей представлен более мелкозернистыми песчано-глинистыми породами. На востоке платформы в них прослежены горизонты конгломератов, аркозов, эффузивов, карбонатов лагун и мелководных заливов. Рифей отличался жарким сухим климатом.

Плитный этап

В венде начинает формироваться плитный чехол. Отложения венда «выплескиваются» из рифтов на водораздельные пространства. Самая древняя вильчанская серия отложений развита в Белоруссии, на Волыни, на Балтийском щите, в Пачелмском и Ладожском авлакогенах. Она представлена красноцветными отложениями, в которых встречены тиллиты и ленточные глины лапландского горизонта. Это свидетельствует о том, что климат стал холоднее, чем в рифее,

Волынская серия среднего венда на юго-западе платформы представлена базальтовыми лавами и пирокластитами. В это время происходит становление структур плиты. Закладывается впадина, включающая Московскую синеклизу.

Валдайская серия верхнего венда распространена повсеместно. Это аргиллиты, конгломераты, песчаники, заполняющие впадины и прогибы. Формируются синеклизы (Московская, Прикаспийская, Рязано-Саратовский прогиб).

Нижнепалеозойский этап развития.

После байкальской складчатости формировался Тиман и структуры Западного Урала, что привело общему поднятию платформы. Отложения нижнего палеозоя выполняют Прикаспийскую структуру, оконтуривают юго-запад и запад УКЩ и БА, известны также на севере вдоль Тимана. Стратонипами нижнего палеозоя являются его отложения вокруг БЩ, в Балтийско-Баренцовоморском прогибе, в так называемом «Палеобалтийско-Баренцевомоском палеопроливе». Нижний кембрий представлен пестроцветами, перекрытыми горизонтом синих глин. К среднему кембрию относится эофитоновый (водорослевый) фукоидный горизонт с гиероглифами, знаками ряби, косой слоистостью). Верхний кембрий нигде на платформе не известен. Русская плита в кембрии представляет собой низкую холмистую равнину.

В ордовике «пролив» превращается в залив, формируется Палеобалтийская синеклиза. Она выполнена карбонтным комплексом с трилобитами. На Волыни он замещен граптолитовыми сланцами мощностью 1-2 км (верх разреза уже силурийский).

Карбонатные отложения силура известны там же.

Средне-верхнепалеозойский структурный этаж или герцинский (варисский) этап развития платформы.

Нижний девон во Львовской впадине, в Латвии и Калининградской области представлен пестроцветной толщей. В Московской синеклизе это базальный песчано-глинистый горизонт. На всей остальной территории осадконакопление началось со среднего девона, в т.ч. в Прикаспийской структуре и на Урале.

Структурная перестройка на Восточно-Европейской платформе началась со среднего девона (начало герцинского геотектонического этапа), когда регенерировался Припятско-Днепрово-Донецкий авлакоген. Он расколол Сарматский щит на УКЩ и Воронежскую антеклизу, отделилась Волго-Уральская антеклиза в результате заложения Русско-Балтийского прогиба (впадина Рига-Москва-Рязань-Почелмский прогиб), заполненного эйфельскими пестроцветами с панцирными рыбами.

В конце эйфельского века погружается Волго-Уральская антеклиза, на месте Русско-Балтийского прогиба формируется Восточно-Русский бассейн (впадина). Волго-Уральская антеклиза проявляется в виде архипелага островов.

В живетский век формируются отложения Главного Девонского поля (Прибалтика) и Центрального девонского поля (Воронежская антеклиза). Везде мелководные морские осадки. Перед франским веком произошло кратковременное поднятие с континентальным осадконакоплением. На Западе это косослоистые красноцветы с остатками рыб (толща похожа на OLD Red Англии). В центре платформы (Московская синеклиза) – морские осадки, на них континентальные красноцветы и известняки мелководья. Восточнее появляются морские терригенные и далее на восток карбонатные отложения. Здесь во фране выделяется фация битуминозных глинистых отложений (черные сланцы доманиковой фации). Прослежены биогермы и органогенно-детритусовые сооружения – барьерные рифы. Рифы в течении раннего и среднего карбона мигрируют на запад.

В Припятско-Донецком прогибе накапливались в среднем девоне галоидные толщи и вулканиты. Скважинами вскрыты жерла стратовулканов Верхний девон представлен карбонатами.

В Прикаспийской синеклизе в позднем девоне по северному и западному бортам протягивается до Приуралья барьерный риф. Он образует уступ высотой до 1700 км, точнее 3 уступа, т.к. наиболее молодые рифы продвинулись в сторону центра впадины до 50 км. За рифами отложились глубоководные маломощные карбонатно-глининые обложения. Это опровергает мнение о поднятии в позднем палеозое Прикаспийской структуры, тем более что на юго-западе среди карбонатных отложений обнаружены два конуса выноса со стороны Скифской плиты.

В каменноугольный период бассейнами осадконакопления являлись Лавовско-Волынский, Днепровско-Донецкий, Восточно-Русский (включая Прикаспийский) прогибы.

В Днепровско-Донецком бассейне в турнейскую и визейскую эпохи формировалась карбонатная толща, с конца визея и включая поздний карбон формировалась паралическая угленосная толща, в конце карбона – араукаритовая толща.

В Восточно-Русском седиментационном бассейне в карбоне сформировалась толща мощностью на западе 300-500 м, а на востоке 1000-1500 м. В турне-визейско-серпуховском цикле формировалась лимническая уленосная (буроугольная) толща, в башкирском веке – кора выветривания, пески, глины, в московском веке и в позднем карбоне пески и глины с брахиоподами и дельтовыми и прибрежными морскими известняками. К востоку к Уральскому бассейну отложения карбона становятся морскими, появляются рифовые постройки.

В ранней перми Восточно-Русский бассейн с Предуральским краевым прогибом представлял собой некомпенсированный прогиб. Существовали полуизолированные бассейны на юге и в центре, в которых накапливались красноцветы и эвапориты В начале поздней перми прогиб компенсируется осадками, а в конце пермского периода прогиб прекращает свое существование в связи с ростом Урала.

В этот же период формировался эвапоритовый комплекс в Прикаспийской впадине.

Герцинский орогенез, проявившийся в геосинклиналях обрамлявших платформу с юга и востока, вывел Восточно-Европейскую платформу из режима морского осадконакопления. Триасовые отложения на Русской плите выполняют лишь внутренние части герцинских впадин. Это регрессивный комплекс, представленный континентальными терригенными фациями, завершает герцинский геотектонический этап развития платформы, Отложения комплекса известены в Припятской, Польско-Литовской, Украинской впадинах, Преддонецком прогибе, Прикаспийской впадине, в центре и на северо-восточной окраинах Московской синеклизы. Это континентальная пестроцветная толща (в Прикаспийской синеклизе морская), сложенныя дельтовыми отложениями, поступавшими со стороны Урала. Выделение из пермских отложений триасовых и их корреляция произведена по рептилиям, рыбам, остракодам и растениям.

На рубеже триаса и юры седиментация прекращается и возобновляется в середине средней юры (доггера). Это рубеж герцинского и альпийского геотектонических этапов.

Юрский седиментационный цикл. Нижнеюрские континентальные песчано-глинистые отложения с бурыми углями сменяются известняками тоара и аалена, известняками-ракушечниками бата-байоса. На Воронежской антеклизе залегают континентальные глины, которые в байосе-бате распространяются на севере до Баренцева моря и на востоке в Прикаспийскую синеклизу.

Ранний мел представлен морской терригенной формацией, поздний в Украинской синеклизе морской карбонатной (фацией писчего мела).

Палеоген распространен на юге Русской плиты. К палеоцену относятся морские глинисто-карбонатные отложения, эоцен представлен фораминиферовой серией, олигоцен и нижний миоцен (низы неогена) представлен глинами «майкопской серии», залегающими с перерывом на палеогене.

В неогене на юге Русской плиты и частично на Украинском щите распространены осадки замкнутых и полузамкнутых внутренних - морей Паратетиса.



Восточно-Европейская платформа составляет докембрийский фундамент Европы и определяет ее главнейшие структурно-геоморфологические черты.

Платформа лежит между складчатыми сооружениями разного возраста. На северо-западе ее окаймляют каледониды - складчатые горные образования Атлантической подвижной зоны. На востоке она граничит с герцинскими складчатыми сооружениями Уральской подвижной зоны. Герцинские складки составляют обрамление платформы на западе. С юга к Восточно-Европейской платформе прилегают альпийские складчатые образования Средиземноморской подвижной зоны.

На большем протяжении своих границ Восточно-Европейская платформа имеет резкие, вторичные, очертания. С надвинутыми на платформу каледонидами она сочленена тектоническим швом. На всех других контактах кристаллический фундамент платформы срезан разломами. Ее окраины сильно погружены в сторону передовых прогибов, отделяющих платформу от прилегающих горных сооружений.

Современный тектонический рельеф Восточно-Европейской платформы определяется системой рассмотренных выше разновозрастных разломов докембрийского, палеозойского и кайнозойского возраста. Разломы расчленяют кристаллический фундамент платформы на блоки, обусловливающие его гипсометрию.

Важную роль в тектоорогении наплатформенного покрова Восточно-Европейской равнины играют субтектонические формы рельефа - соляные структуры и буроугольные купола, распространенные во многих провинциях страны.

Большое тектоорогеническое значение для Восточно-Европейской платформы имеют также вложенные субгеосинклинальные складчатые сооружения, единственные в своем роде структуры - Донецкий и Тиманский кряжи.

В структуре фундамента Восточно-Европейской платформы выделяются: Украинский кристаллический щит и Волыно-Подольская синеклиза, или плита, Балтийский щит, Воронежская антеклиза, Мазурско-Белорусская антеклиза, Днепровско-Донецкая впадина и Донецкий кряж, Причерноморская и Прикаспийская впадины, Прибалтийская синеклиза, Латвийская седловина, Оршанско-Крестцовский прогиб, Московская синеклиза, Пачелмский прогиб, Сурско-Мокшинский вал, Волжско-Уральская антеклиза, Жигулевский свод, Прикаспийская флексура, Омутинский прогиб, система Предуральских впадин - Абдулинский прогиб, Осинская впадина, Омутинский прогиб, Предтиманский прогиб и Тиманский кряж, Печорская синеклиза. Все эти элементы гипсометрии кристаллического фундамента выделены на тектонической карте Европы 1964 г. В какой-то мере с ними связаны распространение геологических формаций и элементы современной геоморфологической поверхности.

Эти региональные структуры характеризуются: одни - щиты - как области рельефа гранитного фундамента, другие - возвышенности - как области с преобладающим отраженным рельефом и третьи - низменности - как области с типичным аккумулятивным рельефом. Вторая и третья категории структурно-геоморфологических регионов имеют мощный наплатформенный покров. Это свидетельствует о преобладании в тектоническом развитии Восточно-Европейской платформы, начиная с раннего палеозоя, нисходящих движений. Они определили главную черту тектонического рельефа, в основном низменной равнины, отличающую ее от других материковых платформ Восточного полушария.

В пределах Восточно-Европейской платформы выделяются Украинский и Балтийский кристаллические щиты, расположенные соответственно в юго — и северо-западной частях платформы.

Украинский кристаллический щит прилегает к Крымо-Карпатской подвижной зоне, расположение которой отражает его внешний край.

Щит протягивается с северо-запада на юго-восток от долины р. Горынь до Азовского моря почти на 1000 км. Ширина его местами превышает 250 км. Распространению кристаллического фундамента в целом соответствуют правобережная Приднепровская и Приазовская возвышенности.

Поверхность кристаллических пород щита поднимается: на севере - Овручский кряж - до 315 м, в средней части - на Побужье - до 320 м и на юге - Приазовская возвышенность - до 327 м над уровнем моря.

В стороны прилегающих впадин поверхность щита сначала снижается постепенно, далее круто срезается разломами. В опущенных частях блоки кристаллического фундамента погружены на глубину 3-5 км, а в осевой части Днепровско-Донецкой впадины более чем на 8 км. Окраинные части щита имеют форму плит, наклоненных в сторону впадин. Морфологически они напоминают шельфы и во многих случаях были такими. В большинстве на поверхности его окраин залегают прибрежные морские отложения, как это прослеживается на западном, Подольском, склоне Украинского кристаллического щита.

Крутые погребенные склоны кристаллического докембрийского фундамента расчленены глубокими каньонами и долинами, аналогичными обнаруженным на материковых склонах океанического дна. Как и последние, долины на склонах Украинского кристаллического щита и других щитов имеют сложное, еще не совсем выясненное происхождение. В данном случае в образовании погребенных долин решающую роль играли тектоника и речная эрозия. Речные долины закладывались и развивались в зонах тектонических нарушений, прежде всего разломов. Определенное значение в выработке форм погребенных долин имела морская абразия, многократно возобновлявшаяся на протяжении истории геологического развития щита, когда его крутые склоны составляли морские берега.

Возраст поверхности денудации Украинского кристаллического щита очень древний и в разных частях его неодинаковый. Остатки древнейшего наплатформенного покрова на щите представляет овручская формация. Терригенно-вулканогенная толща ее выполняет тектонический прогиб более древнего докембрийского фундамента. В конце докембрия аналогичный покров, по-видимому, был уже широко распространен на Восточно-Европейской платформе. Исходя из особенностей залегания овручской формации, можно сделать вывод, что к концу докембрия Украинский кристаллический щит, как большая часть Восточно-Европейской платформы, в целом имел уже выровненную поверхность. Начало денудационного выравнивания относится к позднему архею - к тому времени, когда пустынное кристаллическое плоскогорье платформы начало приобретать блоковую структуру благодаря формированию разломов криворожской системы.

Между завершением образования овручской серии и следующим этапом пенепленизации щита юго-западная часть платформы испытала значительные поднятия, придавшие ей вид возвышенной глыбовой страны. С рифея, особенно в раннем палеозое, происходили резкие деформации кристаллического фундамента платформы. Следствием их было образование глубинных разломов, наметивших основные черты современной тектоорогении платформы. Важнейшими структурными элементами раннепалеозойского заложения на Восточно-Европейской платформе считаются разрывы, ограничивающие Балтийский щит, Тиманскую возвышенность, Пачелмский прогиб, Днепровско-Донецкую впадину, западные склоны Украинского кристаллического щита, весь ее юго-западный и южный края. К ним относится также заложение прилегающих к платформе Средиземноморской и Уральской подвижных зон в их современных границах, Причерноморской и Прикаспийской впадин, а также Подмосковной синеклизы.

На западных склонах Украинского кристаллического щита и всей площади выделившейся тогда Волыно-Подольской плиты-синеклизы в протерозое и раннем палеозое и позже отлагались шельфовые морские отложения. Слон, слабо наклоненные к внешнему краю платформы, сохраняют такое положение на протяжении многих геологических периодов. Разломы, ограничивающие щит с запада и востока, были ареалами вулканизма. Базальты, образовавшиеся в то время, принимают участие в строении местного рельефа. Участки базальтового покрова, погребенные на значительной глубине, обнаружены также в Днепровско-Донецкой впадине.

Па протяжении всего палеозоя, мезозоя и палеогена Украинский кристаллический щит испытывал заметные передвижки блоков, происходившие на фойе общего погружения или поднятия. Приподнятые блоки представляют собой острова. На опущенных блоках в понижениях поверхности щита откладывались осадки. Имеющиеся факты свидетельствуют о том, что уже в кембрийское время перемещение блоков щита было дифференцированным. Остатки кембрийского наплатформенного покрова сохранились в углублениях поверхности щита на Побужье, каменноугольного - в Болтышской впадине.

С эпохи трансгрессий юрского и мелового времени Украинский кристаллический щит, по-видимому, периодически погружался ниже уровня моря. Отложения того времени сохранились во впадинах и древних погребенных долинах на поверхности фундамента. В начале палеогена территория щита на всем протяжении представляла сильно увлажненную сушу, покрытую обильной растительностью. На обширных пониженных территориях его накоплялась мощная буроугольная формация. Морские осадки, отложенные в понижениях рельефа, способствовали всеобщему выравниванию поверхности. На протяжении неогенового периода территория Украинского кристаллического щита покрывалась морем лишь частично. Береговая линия последовательно смещалась, приближаясь к современной. На границе неогена и четвертичного периода, после куяльницкого века, колебания положения береговой линии происходили в пределах современного уровня моря или незначительно превышали его.

В строении рельефа щита морская обстановка оставила яркие следы в виде ступенчатого аккумулятивного рельефа. Это равнинные поверхности, распространяющиеся на большой территории, ограничены слабо выраженными уступами в пределах расположения древних береговых линий. Наиболее ярко они сохранились в сарматском, понтическом, киммерийском и куяльницком бассейнах, балтской дельтовой равнине, а также древнеэвксинской, карангатской и азово-черноморской морских террасах, известных в пределах Причерноморской низменности.

Последний этап формирования наложенных элементов рельефа щита относится к четвертичному периоду. Вслед за снижением уровня куяльницкого бассейна завершилась выработка современных речных систем. В плейстоцене, в связи с продвижением на территорию щита ледникового покрова, произошло образование ряда абразионных и аккумулятивных форм поверхности, группирующихся в зависимости от положения края оледенения. Особенно значительное место занимают формы рельефа, связанные с мореной, флювиогляционными отложениями и лессом. Послеледниковый геоморфогенез выразился в образовании речных террас, долинно-балочных ландшафтов и эоловых локальных форм.

Современный геоморфологический облик щита создавался на протяжении очень длительного времени. Он включает элементы разного возраста, в различной степени переработанные и измененные как древними, так и современными геологическими факторами. Главные черты рельефа щита создают: 1) формы денудации кристаллического фундамента; 2) структурные равнины; 3) водногенетические и гляцигенные наложенные формы поверхности.

Структурно-денудационный рельеф Украинского кристаллического щита, кроме отмеченных ранее факторов, зависит от состава пород, их залегания и структурных взаимоотношений, впоследствии нарушенных разломами и сглаженных денудацией.

О структурных особенностях щита и стратиграфии слагающих осадочно-метаморфических и магматических комплексов существует много крайне противоречивых представлений. Большинство обобщающих материалов не содержит необходимых историкоструктурных и петрогенетических данных и еще недостаточно для тектоорогенических выводов.

На денудационном срезе щита обнажаются структурно-геоморфологические элементы, в определенной степени отражающие последовательность его формирования. Наиболее древние образования щита представляют спилито-кератофировые толщи, развитые в Орехово-Павлоградском районе нижнего Приднепровья. Их возраст 3000-3500 млн. лет (Тугаринов, Войткевич, 1966). В строении выраженных в этом районе магнитных аномалий принимают участие ультрабазиты, метабазиты, кремнистые породы с прослоями слюдяных сланцев, железистые кварциты, переслаивающиеся с сланцами и гнейсами. Связанные с этими отложениями железорудные концентрации располагаются островами в пределах зон аномалий. Наиболее характерными среди них считаются районы Токмак-Могилы, Каменной Могилы и Первомайский в бассейне Камышеватой, Соленой и др.

Базитовые и связанные с ними осадочно-метаморфические породы, на наш взгляд, представляют собой первоначальные образования материковой земной коры, очаги островной суши, аналогичные современным островам океанических островных дуг. Расположение кремнисто-железорудной формации в центральной и юго-восточной частях щита также соответствует закономерностям расположения тектонических систем островов на земной коре океанического типа.

В современном рельефе кремнисто-железорудные толщи благодаря их устойчивости создают возвышенности - крупные холмы обычно округлой формы. Ярким примером такого рельефа может служить Токмак-Могила в Приазовье.

Более поздними образованиями являются ряды осадочно-метаморфических толщ, концентрирующиеся вокруг древнейших эффузивно-осадочных образований. В условиях высокой степени метаморфизма индивидуальные черты осадочных толщ уравнены и в современном строении щита представлены преимущественно гнейсами и мигматитами. Подчиненное значение имеют сланцы и кристаллические известняки. Закономерности взаимоотношений кристаллических толщ затенены последующим дроблением полей разломами на блоки, излияниями базитовых лав и денудационным срезом блоков на разных стратиграфических уровнях.

Важнейшую структурно-геоморфологическую особенность Украинского кристаллического щита составляют многочисленные плутоны. В их расположении наблюдается определенная закономерность, заключающаяся в концентрации интрузивов в зависимости от общих структурных условий. Разграничивают три типа тектоорогении плутонов. К первому относятся сравнительно небольшие интрузии гранитоидов, связанные с древними ареалами формирования материковой коры. Этот тип интрузивов преобладает в юго-восточной части щита, в нижнем Приднепровье и Приазовье. Пространства между древними ареалами заняты полями гнейсов и мигматитов. Последние имеют складчатую, плакантиклинального и плаксинклинального типов структуру. Ряд плоских антиклиналей Г. И. Каляев (1965) выделил под названием куполов. Главные из них: Саксаганский, Демуринский, Криничанский, Камышевахский, Пятихатский вал и Запорожское антиклинальное поднятие. В структурном поле гнейсов и мигматитов, включающем плутоны, лежит Криворожская зона, ограниченная глубинными разломами. С разломами сопряжена локальная складчатость субмеридионального простирания. Складки иногда усложнены согласными интрузиями гранитоидов. Это второй тип плутонов щита.

Интрузии второго типа, связанные со складчатостью, всегда имеют значительные размеры и неоднородный состав. Наиболее ярко они выражены в центральной части щита в среднем Побужье, бассейнах Тетерева и Случа. Граница между юго-восточным и центральным, а также между центральным и северным Волынским блоками Украинского кристаллического щита характеризуется разломной тектоникой. С этими разломами связаны мощные дискордантные плутоны третьего типа - Коростенский, Новомиргородский и ряд других более мелких образований. Это наиболее поздние плутоноструктуры в пределах щита.

Многие интрузивы щита принимают участие в строении современного рельефа. Как видно на примере гранитов р. Каменки, Каменных Могил в Приазовье, Коростышевских гранитов и др., они составляют каменистые возвышенности, увенчанные скалистыми холмами - могилами с характерными формами выветривания. Ареалы каменистых возвышенностей в общем соответствуют форме и размерам плутонов.

Волынский кристаллический блок расположен в северной части щита, в бассейне рек Тетерева, Случа, Уборти и Ужа и ограничен разломами. Южная тектоническая граница проходит схематически в направлении Киев - Житомир - Чуднов - Славута, что приблизительно совпадает с северной границей распространения мигматитов кировоградского комплекса. Приведенная граница является также границей лесной (Полесской) и лесостепной, а также северной границей распространения лесса. Это свидетельствует о тектонической, устойчивой активности отмеченного структурного рубежа в течение очень длительного периода.

Поверхность кристаллического фундамента Волынского блока имеет неравномерный осадочный покров. В местах структурных и денудационных понижений, преимущественно приуроченных к полям распространения гнейсов и мигматитов, залегает осадочный покров, с аккумулятивным рельефом. Такую поверхность имеет Красноармейская (Пулинская) впадина, Коростышевский буроугольный бассейн и др. На всей остальной территории блока наплатформенный покров характеризуется незначительной мощностью, лишь сглаживающей резкость очертаний кристаллических пород.

Положительные формы рельефа созданы обнажениями кристаллического фундамента. Особенности возвышений обусловлены составом слагающих их пород и способом препарирования, в зависимости от фактора денудации. Эти закономерности выдержаны на всей территории Украинского кристаллического щита и всех щитов вообще.

В бассейне Южного Буга, Ингульца, на Приазовском кристаллическом массиве и, по-видимому, в других местах, где кристаллический фундамент срезан денудацией на уровне очагов магмообразования, обнажена куполовая тектоника кристаллических пород, впервые отмеченная В. А. Рябенко (1963). Купола в рельефе представляют собой округлые возвышенности со сглаженными выступами, на несколько метров или десятков метров поднимающиеся над прилегающей местностью. Особенно наглядно эти морфоструктуры выражены в районе Бердичева.

Одной из очень распространенных форм рельефа Украинского кристаллического щита являются каньоны. Они располагаются в большинстве случаев в зонах разломных нарушений. Это унаследованные элементы рельефа. Значительные по размерам и многочисленные каньоны известны в долинах Тетерева, Случа, Ужа, Каменки и др. Самый грандиозный каньон в граните расположен в долине Днепра между Днепропетровском и Запорожьем.

Исключительно разнообразны на Украинском кристаллическом щите формы выветривания. В пределах распространения гранитных массивов преобладают нагромождения отдельностей выветривания, ограниченных тектоническими трещинами. Часто они приобретают причудливые очертания. В области распространения Днепровского оледенения поверхность кристаллических пород повсеместно имеет следы воздействия льда. В районе Коростень - Щорс обнажения красного коростенского гранита имеют вид сглаженных арен, испещренных ледниковыми царапинами и шрамами, в большинстве вытянутыми с севера-северо-запада на юг-юго-восток. На водораздельных участках обнажения гранита имеют форму бараньих лбов. Крутые уступы их поднимаются на 2-3 м. Особенно показательны формы ледниковой денудации западнее Коростеня в окрестностях района Бараши - Яблонец. На довольно обширной территории сплошные обнажения серых гранитов и гнейсов имеют форму типичных курчавых скал.

Юго-западнее Коростеня сглаженные ледником обнажения гранитоидов образуют отдельные округлые холмы, изредка разбросанные среди песчаной равнины. Для скал лабрадорита характерны пластовые отдельности (глыбы) со слегка сглаженными углами. Своеобразные формы выветривания имеют обнажения чарнокитов. Они скапливаются в виде обломков изменчивой формы и размеров. Щелочные магматические породы образуют при выветривании округлые глыбы, залегающие среди рыхлых продуктов выветривания.

Своеобразные геоморфологические ансамбли образовались в пределах ареалов древнего вулканизма. Наиболее значительные площади они занимают в зоне сочленения Приазовского кристаллического массива и Донецкого кряжа, а также в зоне разломов, разграничивающей щит и Волыно-Подольскую плиту. На северных окраинах Приазовского массива, в бассейне Мокрой Волновахи и прилегающей к ее устью части долины Кальмиуса, вулканические породы образуют гряды вдоль долин и скалы на берегах рек. В ряде мест древние лавы сохранили структуры течения. В расположенных на берегах базальтовых скалах иногда наблюдается хорошо выраженная призматическая отдельность. В бассейне Горыни на западных склонах щита базальтовые дайки выступают в виде небольших возвышенностей на фоне сглаженной поверхности Полесской равнины.

Район распространения криворожской железорудной формации лежит в пределах степной аккумулятивной равнины. На фоне равнины, в присклоновых частях, породы этой формации образуют скалы, выделяющиеся темной окраской и металлическим блеском. Среди них примечательна Орлиная скала в Кривом Роге - один из немногих уцелевших памятников рельефа этого типа. В области залегания отложений криворожской серии ландшафты выделяются окраской окислами железа. Это отражено в географических названиях (например, Желтые Воды, Желтореченск).

В геоморфологии Украинского кристаллического щита особое место занимает Овручский кряж. В его строении принимают участие осадочно-вулканогенные породы, преимущественно пирофилитовые сланцы и кварциты. По плоскостям напластования кварцитов часто встречаются ветроприбойные знаки, свидетельствующие о континентальном происхождении этих пород. Овручская серия выполняет понижения поверхности кристаллического фундамента и имеет слабо заметное синклинальное залегание. Это структура типа плаксинклинали, мульды, характерная для наплатформенного покрова.

Овручский кряж более чем на 100 м превышает прилегающие пространства и ограничен крутыми склонами. Наиболее возвышенная часть кряжа лишена покрова послекембрийских отложений. Пониженные участки и присклоновые части кряжа покрыты четвертичными отложениями, представленными озерными, часто ленточными суглинками и лессовыми породами мощностью 20-30 м. В геоморфологии Овручского кряжа большую роль играют многочисленные крутостенные овраги, прорезающие всю лессовую толщу. В устьях оврагов располагаются огромные конусы выносов. Местами они сливаются своими краями и образуют пролювиальную террасу, окаймляющую его поднятие. У юго-западного склона кряжа в пойме Норина на небольшой площади распространены россыпи песчаника палеогенового возраста. Огромные глыбы его создают оригинальные черты пейзажа, встречающиеся повсюду, где обнажается палеоген. Глыбы песчаника обычно имеют сглаженную поверхность и покрыты темной коркой. Кроме окрестностей Овруча палеогеновые песчаники принимают участие в строении рельефа в окрестностях района с. Белка - гора Точильница, Бараши - гора Лисуха и др.

Продукты разрушения кристаллического фундамента были источником материала для образования пород осадочного покрова и связанных с ними минеральных концентраций. Значительные массы продуктов выветривания в течение геологического времени, подвергаясь многократной переработке, были удалены от него на большое расстояние и лишь незначительная часть их фиксировалась в пределах щита. В частности, практически ценные минеральные концентрации сосредоточены в понижениях поверхности кристаллического фундамента - тектонических впадинах, современных и погребенных долинах, а также на склонах щита и в зонах мелководных отложений эпиконтинентальных морей, не раз наступавших на его территорию.

Балтийский щит . На северо-западе Восточно-Европейской платформы кристаллический фундамент обнажается на значительной площади бассейна Балтийского моря от северного побережья Кольского п-ва до о-ва Борнхольм, в Балтийском море - на юге.

На всем протяжении Балтийский щит имеет тектонические границы. На севере от залива Варангер-фьорд до Белого моря щит срезан глубинным разломом, разграничивавшим докембрийский фундамент и каледонские структуры. Реликты докембрийскнх структур сохранились в виде островов Рыбачьего и Кильдина. Очертания Кольского п-ва разломного происхождения. Разломы северо-западного простирания протягиваются на юго-восток от щита в пределы Восточно-Европейской платформы. С субширотными разломами, очевидно, связано происхождение и развитие Кандалакшской, Онежской, Мезенской губы н Варангер-фьорда. Тектоническую впадину представляет собой также ванна Балтийского моря. Происхождение ее аналогично происхождению Оршанско-Крестцовского прогиба фундамента Восточно-Европейской платформы, с которым впадина Балтийского моря, по водимому, представляет собой синтектонические образования.

Юго-западная граница Балтийского щита также разломно-тектонического происхождения. В этой части щит ограничивает разлом, срезающий внешний край платформы. Он проходит с юго-востока на северо-запад в направлении Торунь-Кошалин, на берегу Балтийского моря, южнее о. Борнхольм, Истад, на юге Скандинавии, Хельспнгер, на о. Зеландия, и через п-ов Ютландию, на широте г. Хольстебро. Проливы Эресунн, Каттегат и залив Осло расположены в грабенах на месте погрузившихся блоков окраинной части Восточно-Европейской платформы.

На западе Балтийский щит граничит с каледонидами Скандинавских гор. Тектонический шов в виде плоской дуги проходит с северо-востока на юго-запад от верховья Варангер-фьорда на Лайсвалм и Халгар, в северной части грабена Осло. От последнего граница докембрия Балтийского щита продолжается в шпротном направлении на запад, юго-запад, в направлении Буки-фьорда. На всем протяжении западной границы массы каледонид надвинуты на восток, перекрывают кристаллический фундамент щита. Фронт надвига сильно расчленен денудацией и резко выступает в рельефе, имеет большое структурное и геоморфологическое значение.

Кристаллический фундамент Восточно-Европейской платформы в пределах Балтийского щита приподнят на значительную высоту и во многих районах имеет горный рельеф. В распределении высот его поверхности наблюдается определенная закономерность. Наиболее высоко фундамент приподнят в северо-западной части и вдоль тектонического шва с каледонидами. Отметки поверхности кристаллического фундамента достигают на плоскогорье Финмаркен 1139 м, на северо-западном побережье оз. Стураеле-Треск 2125 м, южнее долины р. Юнген 580 м, горы Дальфьелль 945 м, г. Гауста, Южная Норвегия, 1889 м. В сторону Балтийского моря поверхность кристаллического фундамента снижается.

В южной части Финляндии поверхность кристаллических пород поднимается до 105 м - Южная Сальпауселькя, до 235 м - восточнее Ваза. Восточная часть Балтийского щита имеет относительно более пониженную поверхность по сравнению с западной. Колебание высот здесь в пределах от 0, на побережье Белого моря, до 1189 м в Хибинских горах.

Орографические элементы восточной части Балтийского щита имеют выдержанное северо-западное простирание. В этом направлении протягиваются возвышенности Кольского п-ва Кейвы и «тундры» Панские Луярвик и др., Кандалакшский и Онежский заливы Белого моря, кряж Ветреный Пояс, полоса озер - Онежское, Сегозеро, Выгозеро, Куйто, Топозеро, возвышенности - Западно-Карельская и Манселькя. Большинство долин неисчислимых озер щита имеет северо-западное протяжение.

Орография кристаллического фундамента Балтийского щита отражает, в определенной степени, структуру и состав горных пород, принимающих участие в его строении.

Первые сводки о строении Балтийского щита даны в работах О. И. Мушкетова, А. Д. Архангельского. Современные представления о его структуре освещены в трудах X. Вяюрюнена (1954), К. О. Кратца (1963), А. А. Полканова и Э. К. Герлинга (1961), а также в пояснительных записках к международным тектоническим картам Европы и Евразии (Тектоника Европы, 1964; Тектоника Евразии, 1966).

Структурное поле Балтийского щита характеризуется распространением осадочно-метаморфических пород разного возраста. Древнейшими из них считаются гнейсы и гнейсограниты, реликтовые массивы которых сохранились среди более поздних структурных образований. Возраст этих пород 2500-3500 млн. лет. Более поздние образования 1900-2000 и 2000-2500 млн. лет представлены биотитовыми, силлиманито-ставролитовыми, амфиболовыми гнейсами и амфиболитами с магнетитовыми кварцитами. С этими древнейшими образованиями щита связаны магматические породы - перидотиты, габбро-лабрадориты, габбро-диабазы и граниты.

Из других типов осадочно-метаморфических пород на Балтийском щите распространены филлиты, слюдистые, зеленые, графитовые, глинистые, шунгитовые и другие сланцы, туфосланцы, амфиболиты и амфиболовые сланцы, кварциты, конгломераты, известняки и доломиты. Сильно деформированным осадочно-метаморфическим толщам подчинены разнообразные по составу и разновозрастные магматические породы. Наиболее развиты среди них граниты, сиениты и кварцевые сиениты, диориты, габбро, перидотиты, нефелиновые породы, диабазы, диабазовые туфы и др.

Докембрий Балтийского щита подразделяют на ряд стратиграфических толщ, ограниченных резкими поверхностями несогласия.

На Балтийском щите, по данным X. Вяюрюнена (1959, стр. 53), в пределах Финляндии обнажающиеся геологические тела «…представляют собой типичные глубинные породы, которые остывали на глубине многих километров (до 10-15 км). Таким образом, мы можем получить некоторое представление о степени размыва и о количестве материала, который был перемещен с этого участка Земли в результате медленного разрушения и переноса текучей водой, прежде чем земная поверхность достигла современного уровня».

Покрывающие толщи были снесены не только над гранитами, но и над сланцевыми поясами, которые извиваются между гранитными областями в виде швов, а также слагают иногда более значительные площади. Они являются первичными поверхностными образованиями, но в них повсюду внедрились большие или меньшие гранитные и другие интрузивные массы, которые представляют собой такие же глубинные породы, как и в пределах крупных массивов. Под воздействием внедрившихся гранитов сланцы преобразовались в смешанные гнейсы. Это свидетельствует об островном формировании материковой коры Балтийского щита.

В развитии главной структурной зоны докембрия в Финляндии насчитывается шесть фаз. По X. Вяюрюнену, там, где в наиболее древние, раннеархейские, сланцы внедрились граниты, тектоника проявляется в виде пластических деформаций. Осевые плоскости складок вертикальны или круто наклонены, складки изоклинальные. Интрузии гранитов не являются секущими, не образовалось здесь также инъекционных гнейсов, гранитные жилы распространены мало; они послойны, с резкими контактами, часто собраны в складки вместе со сланцами. Исходя из этого, X. Вяюрюнен писал (1959, стр. 273), что «земная кора, на которой первоначально были отложены сланцевые толщи, под ними совершенно расплавилась». Толща осадков земной коры имела мощность лишь несколько сот метров. Позднее, когда образовалась более мощная кора, складчатость была сосредоточена в отдельных складчатых поясах, обтекавших жесткие участки и гранитные области, расположенные между поясами складчатости.

Структура кристаллического фундамента отражена в рельефе. В районе Ладожского озера структуры «более молодые, чем последняя складчатость этих сланцев, часто открытые или заполненные рыхлым материалом трещины и трещинные пояса, которые четко выделяются в рельефе» (Вяюрюнен, 1959, стр. 280).

Структура восточной части Балтийского щита в пределах Карелии многоэтажная. По данным К. О. Кратца (1963), различаются этажи:

1) гранитогнейсовый фундамент, сложенный из глубоко метаморфизованных архейских образований; на их фоне выступают ранне- и позднепротерозойские складчатые образования;

2) метаморфизованные и сильно дислоцированные геосинклинальные отложения, прорванные основными и кислыми интрузиями; нижний протерозой;

3) ярус пологоскладчатых слабометаморфизованных субгеосинклинальных отложений; средний протерозой;

4) платформенные, неметаморфизованные верхнепротерозойские и палеозойские отложения.

Карелиды рассматриваются как часть протерозойской складчатой области. Складчатые структуры ее срезаны денудацией и сохранились лишь в синклинальных структурных зонах. К последним причисляется относительно хорошо изученный Ладожский синклинорий. «Он отличается развитием мощных, сильно дислоцированных толщ сортавальской и ладожской серий, прорванных интрузиями ультраосновных, основных и гранитоидных пород. Складчатые структуры синклинория усложнены выступающими на современной поверхности глыбами, сложенными древнейшим гранитогнейсовым комплексом и массивами постладожских гранитоидов.

В Ладожском синклинории насчитывается более десятка глыб, сложенных древнейшими гранитогнейсами с реликтами разнообразных гнейсов и амфиболитов, размером от небольших до более крупных в 120-150 км 2 . …эти гранитогнейсовые массивы представляются в виде жестких ядер куполовидных антиклинальных поднятий в структуре перекрывающих их складчатых сланцевых толщ» (Кратц, 1963, стр. 98, 102). Поднятия спаяны между собой относительно узкими синклинальными зонами сложноскладчатых глубокометаморфизованных геосинклинальных отложений и глубинными интрузиями нижнего протерозоя. Это типичная древняя островная структура (Бондарчук, 1969, 1970).

В сильно дислоцированной толще докембрия Балтийского щита выделяются два самостоятельных структурных комплекса, соответствующих главным эпохам складкообразования - Беломорской и Карельской. Более древние саамские и более поздние свекофинские образования, значительно переработанные, местами в ходе складкообразования имеют подчиненное значение. Возраст саамского складчатого комплекса считается не менее 2200 млн. лет. Сложен он осадочно-метаморфическими породами геосинклинального типа. Отложения эти прослеживаются в строении Беломорского и гранулитового массивов.

Беломорский структурный этаж, или беломориды, сложен толщей архейских амфиболитов, гнейсов, гранитогнейсов общей мощностью 6000-8000 м. Эти породы смяты в складки, простирающиеся в северо-западном направлении. Сохранились беломориды между массивами более поздней складчатости в районах, прилегающих к Белому морю, и в Южной Швеции.

Беломориды прибеломорского района имеют очень сложную структуру. Здесь выделяется (Тектоника Европы, 1964) Центральный, Енско-Лоухский, синклинорий. Он разделяет Кандалакшский и Приморский антиклинории на северо-востоке и Керийско-Ковдоворзский - на юго-западе. Главные складки усложнены куполовидными антиклинальными складками и поперечными синклиналями, простирающимися в северо-восточном направлении. В северной части Беломорского массива складки опрокинуты в основном на северо-восток, а в южной - на северо-запад. Складчатые структуры гнейсов, характерные для более высоких срезов беломорид, с глубиной замещаются пластическими деформациями течения.

Характерной чертой структуры беломорид являются многочисленные и разнообразные магматические образования. В структуре беломорид особенно выделяются Беломорский и гранулитовый массивы. К ним с северо-востока и юго-запада прилегают карелиды, сочленение с которыми проходит по разломам. В контактной зоне сосредоточены интрузии основного и кислого состава. Разнообразные интрузивы известны в зонах разломов Ветреного Пояса, в северной Карелии. Разломы отделяют также в западной части Беломорский массив от гранулитового. Последний надвинут на карелиды Лапландии в южном и юго-западном направлениях.

Карелиды - протерозойские складчатые образования Балтийского щита. Их структура наиболее полно изучена в Карелии (Кратц, 1963), Финляндии (Вяюрюнен, 1954). В западной части щита, по-видимому, синтектонические с карелидами свекофенниды и готиды.

В строении карелид принимают участие комплексы пород архейского и протерозойского возраста. Архейские отложения составляют фундамент карелид и обнажаются на их значительной площади. Они представлены гнейсами, гранитогнейсами, мигматитами, амфиболитами.

Протерозойские образования карелид подразделяются на три подгруппы: нижнюю, среднюю и верхнюю. Наиболее распространены нижнепротерозойские толщи, представленные сильно метаморфизованными отложениями. Они собраны в обширные синклинальные зоны, вытянутые в северо-западном направлении. Синклинальные зоны разделяют антиклинальные поднятия, на которых почти нет отложений нижнего протерозоя. Антиклинальные поднятия сложены архейскими образованиями, усложненными более поздними магматическими интрузиями, преимущественно гранита.

Средний протерозой сложен осадочными, слабо метаморфизованными толщами конгломератов, песчаников, кварцитов, карбонато-сланцево-диабазовых образований и сланцево-вулканогенных пород. Эти толщи собраны в пологие складки, часто унаследующие простирание предшествующей протерозойской складчатости.

Верхнепротерозойские отложения распространены в южной части Карельской АССР. Они представлены толщами кварцитов и песчаников и выполняют пологие синклинальные прогибы. Широко развиты позднепротерозойские магматические образования, в составе которых преобладают граниты рапакиви, долериты и габбро-щелочные породы в северной части республики.

Охарактеризуем общие черты тектонической структуры карелид по К. О. Кратцу (1963). В современном срезе по площади преобладают горстово-антиклинальные поднятия, сложенные архейскими образованиями. Между этими поднятиями простираются узкие складчатые синклинальные зоны, сложенные сжатыми в складки геосинклинальными толщами.

Главные структурные элементы карелид (с востока на запад) представляют: Карельская синклинальная зона, сложно сочленяющаяся с Беломорским массивом, Центральный Карельский массив, Восточно-Финляндская синклинальная зона, прилегающая на севере к Лапландскому массиву, на юге включающая Ладожскую синклиналь; на юго-западе Восточно-Финляндская синклинальная зона сочленяется с Центрально-Финляндским и Выборгским массивами; синклинальная зона карелид Северного Норланда.

Структура Центрально-Финляндской синклинальной зоны очень сложная. Большую роль в ее тектоорогении играют, помимо плутонов, крупные разломы.

Протерозойские складчатые структуры в западной части Финляндии и Швеции выделяются под названием свекофеннид, а в южной части Швеции и юго-восточной части Норвегии - готид.

В юго-западной Финляндии свекофенниды и карелиды сочленяются в районе Центрально-Финляндского массива. Последний является структурой, аналогичной Беломорскому массиву.

В строении свекофеннид преобладают граувакковые сланцы, лептиты, представляющие собой метаморфизованные вулканогенные породы, эффузивы общей мощностью около 8000 м. Основание этих образований неизвестно. Характерная особенность сфекофеннид - складчатые, сильно сжатые структуры и пластические структуры течения в зонах гранитизации. Простирание изоклинальных складок преимущественно северо-западное, меняющееся в районах сочленения с массивами.

Главные структурные элементы свекофеннид с востока на запад и юг представляют: окраинная зона свекофеннид северного Норланда, на востоке сочленяющаяся с карелидами; на юге она включает антиклинорий Шеллефте, южнее протягиваются разграниченные разломами: синклинальная зона свекофеннид центрального Норланда, окраинная зона свекофеннид южного Норланда, на юго-западе граничащая с гранитным массивом Вермланд, а на юге включающая антиклинорий свекофеннид и синклинорий оз. Меларен, по которому свекофенниды сочленяются с готидами.

Готиды занимают всю область докембрия южной Скандинавии - южной Швеции и юго-восточной части Норвегии. Вся эта часть Балтийского щита отличается очень сложной, разновозрастной структурой и различным составом сильно деформированных пород. В ее строении особенно большое значение имеют грандиозные древние разломы.

В строении готид принимают участие гнейсы, гранитогнейсы, слюдяные сланцы, кристаллические известняки, кварциты, конгломераты и др. В структуре докембрия южной Скандинавии выделяются отдельные районы, разграниченные разломами и грабенами субмеридионального простирания. Особенно важное тектоорогеническое значение имеет зона разломов оз. Веттера, тянущаяся от Балтийского моря до границ Норвегии и далее на север до оз. Фемунн. Восточнее этой зоны лежат: гранитный массив Вермланд, далее на юго-восток гранитный массив Смаланда и прилегающий к нему на юге антиклинорий Блекинге, сложенный гнейсами. На запад от зоны разломов Веттера протягиваются почти в меридиональном направлении массивы доготских и серых гнейсов юго-западной Швеции. На западе эти структуры срезает грабен Осло.

Западнее грабена Осло расположен обширный район гранитогнейсов южной Норвегии. В восточной части его располагается массив Контсберг-Бамбле, сложенный осадочно-метаморфическими и магматическими породами. К юго-западу от него расположен такой же сложный комплекс «Гранит Телемарк». В северной части главного района докембрия южной Норвегии располагается толща складчатых осадочно-метаморфических отложений мощностью около 4000 м.

В строении тектонического рельефа кристаллического фундамента Балтийского щита большую роль играют состав и структура древнего наплатформенного покрова. Остатки его сохранились в некоторых синклинальных прогибах, на разных частях щита. Обычно реликты наплатформенного покрова сложены осадочными, слабометаморфизованными породами иотния и кембросилура.

В грабенах Западно-Онежском, Сатакунта и др. эти отложения представлены потнийскими кварцито-песчаниками, глинистыми сланцами, алевролитами и др., частично сохранившимися также в грабенах Мухос, Даларна, о-в Хотланд, Гавле, Трисил в Норвегии и др. Рифейские и самые молодые отложения докембрия известны в грабене оз. Веттерн, где они представлены аркозовыми песчаниками и покрывающими их сланцами. Кембро-ордовикские отложения распространены в грабенах Вестергётланда и Остергётланда (район озер Венерн и Веттерн). В их составе встречаются песчаники, кварцевые сланцы, битуминозные известняки и др.

В тектоорогении Балтийского щита как отдельный структурный комплекс выделяется грабен Осло. От Осло-фьорда грабен протягивается на север, северо-восток от кварцитового покрова Скандинавских гор. Амплитуда грабена вдоль восточного берега Осло-фьорда 2000-3000 м. Он выполнен толщей песчаников, сланцев и известняков кембро-силурийского возраста. В северной части грабена эти отложения образуют складки восточно-северо-восточного направления, в южной - палеозойские отложения вмещают интрузии щелочных пород пермского возраста. До этого палеозойские отложения были сглажены, в ранней перми перекрыты континентальными отложениями и базальтовыми покровами. Позже последовало внедрение даек и плутонов монцонитовых ларвикитов, сиенитовых нордмаркитов и др. Характерные особенности структуры этого грабена представляют кальдеры, возникавшие по кольцевым сбросам, и линейно вытянутые ступенчатые сбросы.

Скандинавское нагорье . Каледониды . Скандинавские, или Каледонские, горы - наиболее древнее складчатое сооружение в западной части Евразиатского массива материковой земной коры. В ходе истории геологического развития обширная область каледонид была расчленена на отдельные блоки, значительная часть которых опустилась ниже уровня Атлантического океана. Сохранившиеся области каледонид представляют окаймление Восточно-Европейской платформы на восточном побережье Атлантического океана и Гренландского и Канадского щитов - на западном. Значительными изолированными площадями каледонских структур являются острова Шпицберген, Ян Майей, Медвежий, Фарерские острова, тектоническая связь которых с окраинными горными сооружениями каледонид еще недостаточно ясна.

Каледонское окаймление Восточно-Европейской платформы представляют Скандинавские горы и Каледонские горы (на Британских островах). Условно к этому окаймлению относятся также каледониды Шпицбергена, сочлененные с обломком докембрийского островного массива, - частью Балтийского щита или гипотетической Баронцевоморской плиты - составных элементов докембрийской структуры Восточно-Европейской платформы. Материковые и островные части каледонских образований имеют аналогичные особенности структуры тектонического и климатического, в частности гляцигенного, рельефа.

Скандинавские горы являются составной частью физико-географической области Скандинавского нагорья. В значительной мере они утратили свой первичный тектонический рельеф. Общая пенепленизация в меловое - палеогеновое время, разломная тектоника и новейшие движения, вместе с наложенными формами поверхности, придали ландшафтам докембрийской и каледонской частям Скандинавии много общего. Поэтому, постоянно имея в виду различие структур, возраста и истории развития, считаем целесообразным совместно рассмотреть тектоорогению Балтийского щита и окаймляющих его гор. Каледониды Скандинавии тянутся вдоль внешнего края полуострова от Баренцова до Северного моря на расстоянии свыше 1700 км. В сторону Атлантического океана абрадированные горы образуют шельф, местами достигающий 250 км ширины и погружающийся на глубину до 400 м.

Рассмотрим кратко геологическое строение каледонид. Фундамент гор слагают породы докембрия Балтийского кристаллического щита. В складчатой зоне фундамент местами выступает в виде окон или отдельных массивов. Наплатформенный покров составляют толщи терригенных отложений додевонского возраста. К ним относится спарагмитовый комплекс грубообломочных пород. В восточной части южной Норвегии, Финмаркене и других местах нижняя часть комплекса представлена песчаниками, сланцами. В верхней части его выделяются толщи тиллита, кварцевого песчаника и глинистых пород, перекрытых отложениями, содержащими окаменелости позднекембрийского возраста.

На северо-западе страны и в геосинклинальной древней зоне кембро-силурийские отложения представлены эффузивными и интрузивными породами. В складчатых районах южной Норвегии в составе осадочных отложений выделяются: фация Осло - узловатые известняки, сланцы и песчаники типа олдред; морские отложения района Тронхейма, включающие глинистые сланцы с пачками песчаников, конгломератов и мощную базальтовую (подводную) толщу, а также толщи основных экструзивных пород; фация Норланда - метаморфические породы, преимущественно слюдяные сланцы, кристаллические известняки и доломиты.

В каледонидах Швеции на кристаллическом докембрийском фундаменте залегают породы (Тектоника Европы, 1963): эокембрия - кварциты и аспидные сланцы; ордовика - аспидные и глинистые сланцы, граувакки, кристаллические известняки, заключающие толщи вулканических пород; силура - сланцы, известняки, кварциты, конгломераты и мощные толщи основных вулканических пород. Эти отложения сильно дислоцированы. Структура каледонид Скандинавского нагорья определяется сложной складчатостью, покровной и разломной тектоникой. В интенсивно складчатой структуре известны многочисленные внедрения магматических пород.

Главные особенности тектоорогении каледонид создают покровы. Фронт их протягивается вдоль всего Скандинавского п-ва. Внутренние районы гор образуют огромный тектонический покров Севе. Его фронтальная часть выделяется в самостоятельный покров, сложенный гранитами и сиенитами. Средняя часть покрова Севе, также самостоятельная, сложена аспидными сланцами, доломитизированными мраморами, кварцитами и аркозовыми песчаниками. Эти породы включают дайки и силлы базальта, образовавшиеся еще в допокровную фазу. Центральная часть покрова Севе сложена гранатовыми гнейсами, сильно метаморфизованными породами, возникшими из аргиллитов, известняков и амфиболитов, входивших в состав кристаллического фундамента. На этих толщах залегают сланцы Кёли кембро-силурийского возраста. Вся толща пород покрова Севе интрудпрована гранитами, габбро, базальтами и др. Покровы каледонид нагромождались одни на другой с запада на восток.

В завершающие фазы каледонского горообразования в южной части горной страны возникли горстовые, сводовые поднятия во внешней зоне надвигов. Восточные передовые части их нарушены сбросами и усложнены вторичными надвигами и лежащими складками. Этим структурам, по-видимому, синтектоиичны более молодые покровы южной Норвегии, надвинутые на более древние, аналогичные каледонские структуры.

В каледонидах Скандинавии по особенностям структуры с севера на юг выделяются отдельные тектонические районы: п-ов Варангер, Южный Порсангер, окна докембрия н-ова Порсангера, синклиналь Офотен, эруптивы Лофотеи, окно Ромбак, окно Назафьелль, Кварцитовый покров, Спарагмитовый порог, Трондхеймский антиклинорий, области спарагмитов и гнейсов, покровы Поту и. Каждый из тектонических районов отличается особенностями структуры и состава слагающих его толщ, так или иначе отражающихся в рельефе.

На Шпицбергене каледониды занимают западную часть архипелага. С докембрийским основанием восточного Шпицбергена они сочленяются тектоническим швом. В строении каледонид Шпицбергена принимают участие осадочные отложения, залегающие на о-ве Северо-Восточная Земля на смятых в широтные складки гнейсах. Эти отложения объединяются в формацию Гекла-Хук. В ее составе преобладают сланцы, кварциты, доломиты, конгломераты, тиллиты. В западной части архипелага мощность толщи Гегла-Хук составляет около 16 000 м. Она включает мощные вулканогенные толщи.

Породы серии Гекла-Хук собраны в линейно вытянутые меридиональные складки, опрокинутые на платформу и осложненные надвигами. Крупные структуры представляют антиклинорий Новой Фрисландии, протягивающийся на 150 км, синклинорий пролива Хинлопен, антиклинорий Кросс-Фьорда и др. Прогиб между этими антиклинориями ограничен разломами и выполнен красноцветными песчаниками девонского возраста. Все перечисленные отложения на юг архипелага перекрываются покровом верхнепалеозойских и мезозойских отложений. В составе их известны нижнекаменноугольные отложения с прослоями угля. На западном Шпицбергене они образуют крупную мульду (с юго-востока на северо-запад). В центре мульды расположена впадина, выполненная конгломератами, песчаниками и глинами третичного возраста с мощными пластами каменного угля. Мощность этих отложений около 2000 м. В восточной части архипелага Шпицбергена широко распространены траппы и следы вулканической деятельности в мезозое. Каледонская складчатость на Шпицбергене завершилась в силуре. На острове известны интрузии каледонских гранитов.

Каледониды Британских островов занимают преобладающую их часть. Складчатые сооружения выступают здесь на поверхность и прикрываются чехлом палеозойских и кайнозойских отложении. Каледониды островов зажаты в раму докембрия, на северо-западе - обломком платформы Эрна, в центральной Англии - выступом Восточно-Европейской платформы. На юге Англии и Ирландии каледониды граничат с варисцидами.

Кристаллический фундамент платформы Эриа обнажается на северо-западе Шотландии и Внешних Гебридах. Докембрийское основание Восточно-Европейской платформы прослеживается в юго-восточной части Англии севернее зоны герцинид. Рама каледонид Британии была в докембрии единой платформой, простиравшейся на запад в Атлантическом океане до континентального склона. В позднем докембрии в краевой части образовался ровообразный субгеосинклинальный прогиб, в современной структуре занимаемый складчатыми раннепалеозойскими образованиями.

Складчатые каледонские образования развиты на большей части территории Шотландского, Северо-Ирландского и Южно-Шотландского нагорий, в Пеннинских и Кембрийских горах, Центральной равнине Ирландии.

В строении каледонид Британии принимают участие различные осадочные отложения нижнего палеозоя. Суммарная мощность их в осевой части британских каледонид, в Южно-Шотландском нагорье достигает, по-видимому, 20 000 м. Важнейшей особенностью их является большое развитие мигматитов и гранитов. В каледонидах Британских островов в настоящее время (Тектоника Европы, 1963) выделяются метаморфическая и неметаморфическая зоны. Первая занимает северо-западную часть страны. На юго-востоке от неметаморфической зоны ее отделяет глубинный разлом, или линеамент, с которым связан Большой пограничный сброс. Для метаморфической зоны характерна альпинотипная тектоника с сильно развитыми покровами. Наиболее ярко ее структура выражена в Шотландском нагорье н северной Ирландии. В Шотландском нагорье метаморфическая зона представлена аргиллитовыми породами позднедокембрийского возраста, лежащими над ними мелководными и глубоководными отложениями со спилитовыми лавами и интрузиями зеленокаменных пород. Возраст этих образований - от позднего докембрия до позднего кембрия.

Дислокации метаморфической зоны проходили двумя фазами: в раннем или среднем ордовике и среднем силуре. Складки претерпели повторное смятие с развитием лежащих складок и покровов. Движение было направлено на внешние стороны - на северо-запад и юго-восток. На северо-западе развит покров Мойн, юго-восточнее которого проходит крупный разлом Грент Глен, Поддвиг форланда под дислоцированные массы составляет 120 км. Большой покров Лох-Тей развит на юго-восточном краю метаморфической зоны. Лежащее крыло этого покрова обнажается вдоль южной границы Шотландского нагорья. В Грампианских горах развиты обширные поля мигматизации и интрузии гранита.

В южной части метаморфической зоны большой грабен долины Мидленд заполнен молодыми осадками, под которыми скрыто сочленение метаморфических и неметаморфических зон.

В неметаморфической зоне каледонид выделяют три структурных этажа. Нижний из них в грабене Мидленд, юго-западной Шотландии и северной Ирландии сложен спилитовым комплексом. Средний структурный этаж образует Южное нагорье. Он включает верхний ордовик и силур. Мощность его 10 000 м. Для него характерны интрузии гранодиоритов раннедевонского возраста. Массивы их обнажены в западной части Южно-Шотландского нагорья. К среднему структурному этажу неметаморфической зоны относятся также толщи древнего красного песчаника. Он отложился в древних впадинах северной Шотландии, грабене Мидленд и на Оркнейских островах, чему сопутствовал интенсивный андезитовый и базальтовый вулканизм.

Осадочные толщи образуют ряд флексур, разделенных параллельными сбросами. Структура их усложнена изоклинальными, опрокинутыми складками.

Сложная структура и разнообразный литологический состав каледонид определяют тектонический рельеф Британских островов.

Восточно-Европейская древняя платформа - относительно тектонически стабильный, почти изометричный блок грубой пятиугольной формы, который на северо-западе, востоке, юге и юго-западе граничит со складчатыми поясами, а на западе, юго-востоке и северо-востоке - с платформенными областями. На востоке платформу обрамляет складчатое сооружение Урала (герцинское), вытянутое в долготном направлении. На юге Восточно-Европейская платформа граничит с расположенной в северной части Средиземноморского складчатого пояса молодой Скифской плитой, занимающей равнинные части Крыма и Предкавказья. Граница от устья Дуная следует к востоку, пересекая северо-западную часть Черного моря, Перекопский перешеек и северную часть Азовского моря. Южная граница платформы следует вдоль северною края погребенного продолжения сооружения Донбасса через дельту Волги до устья Эльбы.

Восточноевропейская платформа (Русская плита по Э. Зюссу, Восточноевропейская платформа по А. Д. Архангельскому, Фенно-Сарматия по Г. Штилле) занимает обширные пространства европейского материка от Бристольского залива (Англия) на западе до подножия Урала на востоке, от Черного моря на юге и до Белого моря на севере. Она включает щиты (Балтийский и Украинский) и Русскую плиту - огромные опущенные участки платформы, перекрытые осадочным чехлом.

Восточная граница платформы между Полюдовым Камнем и Актюбинском Приуральем протягивается под герцинским Предуральским краевым прогибом. На юго-востоке граница платформы неясна, на многих тектонических картах она проводится вдоль Южноэмбенского авлакогена, однако в последние годы к Восточноевропейской платформе относят Североустюртский прогиб (А. А. Богданов, Э. Э. Фотиади, В. С. Журавлев). В таком случае юго-восточная граница платформы проходит между Мангышлаком и западным побережьем Аральского моря. На юге платформа граничит с эпигерцинскими плитами: Скифской и Туранской.

На меридиане Цимлянского водохранилища южная граница платформы смещена по крупнейшему меридиональному разлому (Главный Восточноевропейский), а ее западный отрезок смещен на юг по крайней мере на 100 км. На этом участке очень сложное строение Восточноевропейской платформы, в ней заложен поздний авлакоген Донбасса, а в сопредельную Скифскую плиту глубоко вдается докембрийский Сальский клин Восточноевропейской платформы. Следовательно, южная граница проходит через дельту Волги к верховьям р. Сал, через Азовское море и Перекопский перешеек в район Преддобруджинскго герцинского краевого прогиба.

На юго-западе Восточноевропейская платформа граничит с альпийским Предкарпатским краевым прогибом и эпигерцинской плитой к северу от Арденн - Судет - Силезии, севернее Вроцлава и Берлина и южнее Гамбурга. Эту часть докембрийской платформы (включая юго-восточную Англию и частично дно Северного моря) М. В. Муратов выделил в самостоятельную Среднеевропейскую плиту

На северо-западе граница платформы проходит вдоль подножий каледонских складчатых цепей Скандинавии. Северная граница платформы соприкасается с байкальской складчатой системой, включающей Тиман, п-ова Канин, Рыбачий, Варангер.

Контуры платформы резкие, угловатые и состоят из прямолинейных отрезков, протягивающихся на сотни и тысячи километров и отображающих сложно построенные шовные зоны.

На платформе выделяются следующие основные структурные элементы:

I. Щиты- выступы фундамента: Балтийский, Украинский.

II. Авлакогены: Пачелмский, Оршанский, Крестцовский, Московский, Кажимский, Солигаличский, Абдуллинский, Большого Донбасса.

III. Области относительно неглубокого залегания фундамента - склоны щитов, антеклизы: Белорусская, Воронежская, Волго-Уральская.

IV. Области глубокого залегания фундамента - синеклизы: Московская, Глазовская, Причерноморская, Прикаспийская, Польско-Литовская, Балтийская.

V. Основные глубинные разломы: Главный Восточноевропейский разлом.

Кристаллический фундамент платформы

Фундамент Восточноевропейской платформы сложен глубокомета-морфизованными архейскими и нижнепротерозойскими образованиями. Он обнажается в Балтийском щите, охватывающем на территории СССР Карелию и Кольский полуостров, в Украинском щите от г. Коростеня до г. Жданова и на Воронежской антеклизе между городами Павловск и Богучары. На Русской плите докембрийский фундамент вскрыт тысячами скважин.

Большой вклад в познание докембрия внесли А. А. Полканов, К. О. Кратц, Н. Г. Судовиков, М. А. Семихатов, Л. И. Салоп, Н. П. Семененко, М. А. Гилярова, из зарубежных геологов - Н. X. Магнуссон (Швеция), А. Симонен (Финляндия), X. Сколвол (Норвегия).

Согласно новой стратиграфической шкале докембрия СССР (1977) в нем выделяются два крупнейших подразделения: архей (древнее 2600+100 млн. лет) и протерозой (2600±100 млн. лет - 570+20 млн. лет). В отличие от ранее действующей шкалы в новой шкале протерозой делится на нижний (2600± 100 млн. лет - 1650±50 млн. лет) и верхний (1650 + 50 млн. лет - 570±20 млн. лет) протерозой. Крупные стратиграфические подразделения докембрия установлены на основе выделения планетарных тектоно-магматических циклов, отвечающих важным этапам формирования континентальной коры. Определение возраста циклов и их корреляция осуществляются радиогеохронологическим методом. Стратотипической местностью для архея и нижнего протерозоя является восточная часть Балтийского щита - Карелия.

Архей. Архейские образования в Карелии слагают Беломорский массив и обнажаются в северной части Кольского полуострова. Они представлены беломорским и лопским комплексами суперкрустальных "и плутонических пород. Суперкрустальные породы - биотитовые гнейсы и гранито-гнейсы, амфиболиты, амфиболитовые гнейсы, биотит-гранатовые, кианитовые гнейсы. Породы метаморфизованы в гранулитовой фации и испытали диафторез в условиях амфиболитовой и эпидот-амфиболитовой фаций. Породы архея прорываются основными, ультраосновными и кислыми интрузиями. Наиболее ранние интрузии представлены перидотитами и габброноритами, известными под общим названием "друзитов". Они составляют, очевидно, древние офиолитовые пояса. Позже внедрялись плагиоклазовые и микроклиновые граниты и в конце архея в результате ребольско-днепровской складчатости - биотитовые и двуслюдяные граниты. Абсолютный возраст беломорских и лопских пород древнее 2700 млн. лет. Отдельные датировки приближаются к 3000 млн. лет. Архей северной части Кольского полуострова- Кольский комплекс (как и беломорский) сложен глубоко-метаморфизованными породами: гнейсами и амфиболитами. Среди них встречаются чарнокиты, магнетитовые сланцы и кварциты. Архейские породы подвержены интенсивной мигматизации и гранитизации. Абсолютный возраст 2700-3300 млн. лет. Кольская сверхглубокая скважина вскрыла архей на глубине (7 км) предполагаемого перехода гранитного слоя в базальтовый. Он представлен гнейсами, гранито-гнейсами и амфиболитами, количество" которых возрастает от 10% на глубине 7 км до 30% на глубине 10 "км.

На Украинском щите архей обнажается в Приднепровском, Подольском и Конотопском массивах, где он представлен гнейсами, мигматитами, амфиболитами днепровского и белозерского комплексов. Породы гранитизированы и мигматизированы, в них встречаются скопления графита и железистых кварцитов. Абсолютный возраст 2700-3600 млн. лет.

На Воронежской антеклизе фундамент залегает на небольшой" глубине. Архей сложен интенсивно метаморфизованными, в разной степени гранитизированными фемическими вулканогенными образованиями: гранат-биотит-плагиоклазовыми, амфибол-биотит-плагиоклазовыми гнейсами, покровами метабазитов (обоянский и Михайловский комплексы). Породы прорваны интрузиями основного и кислого состава с абсолютным возрастом 2900-2600 млн. лет.

Нижний протерозой. Нижнепротерозойские складчатые комплексы слагают узкие прогибы и зоны опускания между поднятыми блоками архейского фундамента. На Восточноевропейской платформе метаморфические комплексы в фундаменте образуют Свекофенскую складчатую область, расположенную по обоим берегам Балтийского моря и окаймленную поднятыми блоками архейского фундамента: Кольско-Карельским, Лапландским и Южноскандинавским. Нижний протерозой Свекофенской складчатой области сложен комплексом гнейсов, образовавшихся при метаморфизме осадочных глинисто-песчанистых пород, а также кислых и средних вулканических пород. Эти породы составляют лептитовую формацию, отдаленно напоминающую флишоидную. В отдельных участках встречаются рассланцованные основные эффузивы: спилиты, спилито-кератофиры. Мощность нижнепротерозойского комплекса 8-10 км. Формирование Свекофенской складчатой области сопровождалось внедрением огромных массивов грантиоидов (гранитные плутоны Хапранд, Лина и др.).

Породы докембрийского фундамента вскрыты скважинами во многих синеклизах Русской плиты, где их состав аналогичен докембрийским образованиям щитов. В восточной части Русской плиты архей вскрыт наиболее глубоко внедрившейся в докембрий Туймазинской опорной скважиной, прошедшей по породам фундамента более 2000 м. Он представлен биотит-плагиоклазовыми инъецированными гнейсами (2570 млн. лет) и интрузивными образованиями - амфиболитизированными габброидами, окварцованными гиперстеновыми гнейсодиоритами, габбро-диабазами. В магматических породах, особенно в зонах повышенной трещиноватости, присутствуют эпигенетические битумы и газообразные углеводороды. Судя по характерным деформациям (катаклазу, трещиноватости), скважина расположена вблизи крупного разлома.

В докембрийских отложениях центральной части Русской плиты (по данным бурения) обнаружены образования древней каолиновой коры выветривания, мощность которой в изученных разрезах колеблется от 7 до 7,5 м, а в районе Гродно - даже 30,8 м. Породы коры выветривания представлены измененными каолинизированными плагиогранитами. Бокситоносная кора выветривания установлена на поднятых архейских блоках Курской магнитной аномалии. Большая мощность коры выветривания свидетельствует о длительном континентальном перерыве на платформе после формирования фундамента.

ВОСТОЧНО-ЕВРОПЕЙСКАЯ ПЛАТФОРМА

История выделения

В 1894 г. А. П. Карпинский впервые выделил Русскую плиту, понимая под ней часть территории Европы, характеризующуюся стабильностью тектонического режима в течение палеозоя, мезозоя и кайнозоя. Несколько раньше Эдуард Зюсс в своей знаменитой книге "Лик Земли" также выделил Русскую плиту и Скандинавский щит. В советской геологической литературе плиты и щиты стали считать составными единицами более крупных структурных элементов земной коры - платформ. В 20-х годах нашего века Г. Штилле для обозначения этой платформы употребил термин "Фенносарматия". Позднее А. Д. Архангельский ввел в литературу понятие "Восточно-Европейская платформа", указывая, что в ее составе могут быть выделены щиты и плита (Русская). Это наименование быстро вошло в геологический обиход, и отражено на последней Международной тектонической карте Европы (1982).

Когда в конце прошлого века А. П. Карпинский впервые обобщил все геологические данные по Европейской России, на ее территории не было ни одной скважины, достигшей фундамента, да и мелкие скважины насчитывались единицами. После 1917 г. и особенно после Великой Отечественной войны геологическое изучение платформы пошло вперед стремительными темпами, с использованием всех новейших методов геологии, геофизики, бурения. Достаточно сказать, что в настоящее время на территории европейской части СССР располагаются тысячи скважин, вскрывших фундамент платформы, а менее глубокие скважины насчитываются сотнями тысяч. Вся платформа охвачена гравиметрическими и магнитометрическими наблюдениями, а для многих районов имеются данные ГСЗ. В последнее время широко используются космические снимки. Поэтому в настоящее время мы располагаем огромным новым фактическим геологическим материалом, ежегодно пополняющимся.

Границы платформы

Границы Восточно-Европейской платформы чрезвычайно резкие и четкие (рис. 2). Во многих местах она ограничена прямолинейными зонами надвигов и глубинных разломов, которые Н. С. Шатский называл краевыми швами или краевыми системами, отделяющими платформу от обрамляющих ее складчатых сооружений. Однако не во всех местах границы платформы могут быть проведены достаточно уверенно, особенно там, где ее краевые участки глубоко погружены и фундамент не вскрыт даже глубокими скважинами.

Восточная граница платформы, трассируется под позднепалеозойским Предуральским краевым прогибом, начиная от Полюдова Камня, через Уфимское плато к выступу Каратау вплоть до междуречья рек Урал и Сакмара. Герцинские складчатые сооружения Западного склона Урала надвинуты в сторону восточного края платформы. К северу от Полюдова Камня граница поворачивает к северо-западу, проходит вдоль юго-западного склона Тиманского кряжа, далее к южной части

Рис. 2. Тектоническая схема Восточно-Европейской платформы (по А. А. Богданову, с дополнениями):

1 - выступы на поверхность дорифейского фундамента (I - Балтийский и II - Украинский щиты); 2 - изогипсы поверхности фундамента (км), обрисовывающие главные структурные элементы Русской плиты (III - Воронежская и IV - Белорусская антеклизы; V - Татарский и VI - Токмовский своды Волго-Уральской антеклизы; VII - Балтийская, VIII - Московская и IX - Прикаспийская синеклизы; X - Днепровско-Донецкнй прогиб; XI - Причерноморская впадина; XII - Днестровский прогиб); 3 - области развития соляной тектоники; 4 - эпибайкальская Тимано-Печорская плита, внешняя (а ) и внутренняя (б ) зоны; 5 - каледониды; 6 - герциниды; 7 - герцинские краевые прогибы; 8 - альпиды; 9 10 - авлакогены; 11 - надвиги, покровы и направление надвигания масс пород; 12 - современные границы платформы

полуострова Канин (западнее Чешской губы) и далее к полуострову Рыбачий, острову Кильдин и Варангер-фиорду. На всем этом пространстве рифейские и вендские геосинклинальные толщи надвинуты на древнюю Восточно-Европейскую платформу (в каледонское время). В пользу такого проведения границы заставляют склоняться геофизические данные, свидетельствующие о продолжении структур рифейских толщ Северного и Полярного Урала, так называемых доуралид, в северо-западном направлении в сторону Болынеземельской тундры. Это хорошо подчеркивается полосовыми магнитными аномалиями, резко отличающимися от мозаичных аномалий магнитного поля Русской плиты. Магнитный минимум, характеризующий рифейские сланцевые

толщи Тимана, занимает и западную половину Печорской низменности, а восточная ее половина обладает уже другим, полосовым знакопеременным магнитным полем, сходным, по данным Р. А. Гафарова и А. К. Запольного, с аномальным полем зон развития вулканогенноосадочных рифейских толщ Северного и Полярного Урала 1 . Северо-восточнее Тимана фундамент Тимано-Печорской эпибайкальской плиты, представленный эффузивно-осадочными и метаморфическими породами рифея - венда (?), вскрыт рядом глубоких скважин.

Северо-западная граница платформы, начиная от Варангер-фиорда, скрыта под надвинутыми на Балтийский щит каледонидами северной Скандинавии (см. рис. 2). Амплитуда надвигания оценивается более чем в 100 км. В районе г. Берген граница платформы уходит в Северное море. В начале нашего века А. Торнквист наметил западную границу платформы по линии г. Берген - о. Бонхольм - Поморье - Куявский вал в Польше (Датско-Польский авлакоген), вдоль этой линии существует ряд кулисообразных разрывов с резко опущенным юго-западным крылом. С тех пор эта граница получила название "линии Торнквиста". Это "минимальная" граница платформы. Граница Восточно-Европейской платформы (линия Торнквиста) в районе о. Рюген поворачивает на запад, оставляя Ютландский полуостров в пределах платформы, и встречается где-то в Северном море с продолжением северной границы платформы, следующей вдоль фронта надвинутых каледонид и выходящей к Северному морю в Скандинавии.

От северной окраины Свентокшишских гор граница платформы прослеживается под Предкарпатским краевым прогибом, до Добруджи в устье Дуная, где она резко поворачивает к востоку и проходит южнее Одессы, через Сиваш и Азовское море, прерывается к востоку от Ейска в связи с заходом в тело платформы герцинского складчатого сооружения Донбасса и вновь появляется в Калмыцких степях. Надо отметить, что в том месте, где Карпаты на юге и на севере отворачивают к западу, платформа граничит с байкалидами (Рава - Русская зона). Несмотря на общую прямолинейность границ платформы в Причерноморье, она нарушена многочисленными поперечными разрывами.

Далее граница проходит южнее Астрахани и поворачивает к северо-востоку вдоль Южно-Эмбенской зоны разломов, которая трассирует узкий погребенный герцинский прогиб (авлакоген), сливающийся с Зилаирским синклинорием Урала. Этот Южно-Эмбенский герцинский авлакоген отсекает от платформы ее глубоко погруженный блок в пределах Устюрта, как предполагается по данным ГСЗ. От Актюбинского Приуралья граница платформы следует прямо к югу вдоль западного побережья Аральского моря вплоть до Барсакельмесского прогиба, где почти под прямым углом она поворачивает на запад, вдоль Мангышлакско-Гиссарского разлома. Существует также мнение, что в Северо-Устюртской глыбе фундамент имеет байкальский возраст, т. е. в юго-восточном углу платформы возникает почти такая же ситуация, как и в западном, что связано с неопределенностью возраста складчатого фундамента, погруженного на значительную глубину.

Таким образом, Восточно-Европейская платформа похожа на гигантский треугольник, стороны которого близки к прямолинейным. Характерной особенностью платформы является наличие по ее периферии глубоко опущенных впадин. С востока платформа ограничена

герцинидами Урала; с северо-востока - байкалидами Тимана; с северо-запада - каледонидами Скандинавии; с юга - преимущественно эпигерцинской Скифской плитой Альпийско-Средиземноморского пояса, и только в районе Восточных Карпат к платформе вплотную примыкают складчатые цепи альпид, наложенные на байкалиды и герциниды.

Соотношение фундамента и чехла

Фундамент платформы сложен метаморфическими образованиями нижнего и верхнего архея и нижнего протерозоя, прорванными гранитоидными интрузиями. Отложения верхнего протерозоя, в составе которых выделены рифей и венд, относятся уже к платформенному чехлу. Следовательно, возраст платформы, устанавливаемый по стратиграфическому положению древнейшего чехла, может быть определен как эпираннепротерозойский. По мнению Б, М. Келлера и В. С. Соколова, к наиболее древним отложениям чехла Восточно-Европейской платформы может принадлежать и верхняя часть нижнепротерозойских образований, представленных полого залегающими толщами песчаников, кварцитов и базальтов, слагающими простые прогибы. Последние часто осложнены сбросами и местами приобретают форму широких грабенов. Области с байкальским фундаментом не следует включать в состав древней платформы.

Древнейший чехол платформы обладает некоторыми особенностями, отличающими его от типичного платформенного чехла палеозойского возраста. В различных местах платформы возраст древнейшего чехла может быть разным. В истории формирования платформенного чехла выделяются две существенно различные стадии. Первая из них, по А. А. Богданову и Б. М. Келлеру, отвечает, по-видимому, всему рифейскому времени и началу раннего венда и характеризуется образованием глубоких и узких грабенообразных впадин - авлакогенов, по Н. С. Шатскому, выполненных слабо метаморфизованными, а иногда и дислоцированными рифейскими и нижневендскими отложениями. Возникновение узких впадин предопределялось сбросами и структурным рисунком наиболее молодых складчатых зон фундамента. Такой процесс сопровождался довольно энергичным вулканизмом. А. А. Богданов предложил именовать эту стадию развития платформы авлакогенной, а отложения, сформировавшиеся в это время, выделять в нижний этаж платформенного чехла. Надо заметить, что большинство рифейских авлакогенов продолжало "жить" и в фанерозое, подвергаясь складчатым кадвиговым и глыбовым деформациям, а местами проявлялся и вулканизм.

Вторая стадия началась во второй половине венда и сопровождалась существенной тектонической перестройкой, выразившейся в отмирании авлакогенов и формировании обширных пологих впадин - синеклиз, развивавшихся на протяжении всего фанерозоя. Отложения второй стадии, которую в целом можно назвать плитной, образуют верхний этаж платформенного чехла.

Рельеф фундамента и современная структура платформы

В пределах Восточно-Европейской платформы как структуры первого порядка выделяются Балтийский и Украинский щиты и Русская плита . Балтийский щит с конца среднего протерозоя испытывал тенденцию к поднятию. Украинский щит в палеогене и неогене перекрывался маломощным платформенным чехлом. Рельеф фундамента

Русской плиты чрезвычайно сильно расчленен, с размахом до 10 км, а местами и больше (рис. 3). В Прикаспийской впадине глубина залегания фундамента оценивается в 20 или даже 25 км! Расчлененный характер рельефу фундамента придают многочисленные грабены - авлакогены, днища которых нарушены диагональными или ромбовидными сбросами, по которым происходили подвижки отдельных блоков с формированием горстов и более мелких вторичных грабенов. К таким авлакогенам относятся на востоке платформы Серноводско-Абдулинский, Казанско-Сергиевский, Кировский; в центре Пачелмский, Доно-Медведицкий, Московский, Среднерусский, Оршанско-Кресцовский ; на севере Кандалакшский, Керецко-Лешуконский, Ладожский ; на западе Львовский, Брестский и другие. Почти все эти авлакогены выражены в структуре отложений нижнего этажа платформенного чехла.

В современной структуре Русской плиты выделяются протягивающиеся в широтном направлении три крупные и сложнопостроенные антеклизы: Волго-Уральская, Воронежская и Белорусская (см. рис. 3). Все они представляют собой участки фундамента, приподнятые в виде сложных обширных сводов, нарушенных сбросами, по которым их отдельные части испытали разные по амплитуде перемещения. Мощность палеозойских и мезозойских отложений чехла в пределах антеклиз обычно составляет первые сотни метров. Наибольшей сложностью строения характеризуется Волго-Уральская антеклиза, состоящая из нескольких выступов фундамента (Токмовский и Татарский своды ), разделенных впадинами (например, Мелекесской), выполненными средне- и верхнепалеозойскими отложениями. Антеклизы осложнены валами (Вятским, Жигулевским, Камским, Окско-Цнинским ) и флексурами (Бугурусланской, Туймазинской и др.). От Прикаспийской впадины Волго-Уральская антеклиза отделяется полосой флексур, получивших название "зоны Перикаспийских дислокаций". Воронежская антеклиза обладает асимметричным профилем - с крутым юго-западным и очень пологим северо-восточным крыльями. От Волго-Уральской антеклизы она отделяется Пачелмским авлакогеном , открывающимся в Прикаспийскую впадину и в Московскую синеклизу. В районе Павловска и Богучар фундамент антеклизы обнажается на поверхности, а на юго-востоке она осложнена Доно-Медведицким валом. Белорусская антеклиза , обладающая наименьшими размерами, соединяется с Балтийским щитом Латвийской , а с Воронежской антеклизой - Бобруйской седловинами.

Московская синеклиза представляет собой обширную блюдцеобразную впадину, с наклонами на крыльях около 2-3 м на 1 км. Польско-Литовская синеклиза обрамляется с востока Латвийской седловиной, а с юга - Белорусской антеклизой и прослеживается в пределах акватории Балтийского моря. Местами она осложнена локальными поднятиями и впадинами.

Южнее полосы антеклиз располагается очень глубокая (до 20- 22 км) Прикаспийская впадина , на севере и северо-западе четко ограниченная зонами флексур; сложный Днепровско-Донецкий грабенообразный прогиб , разделяющийся Черниговским выступом на Припятский и Днепровский прогибы . Днепровско-Донецкий прогиб с юга ограничен Украинским щитом, южнее которого находится Причерноморская впадина, выполненная отложениями позднего мезозоя и кайнозоя.

Рис 3. Схема рельефа фундамента Русской плиты (с использованием материала В. Е. Хаина):

1 - выступы дорифейского фундамента на поверхность. Русская плита: 2 - глубина залегания фундамента 0-2 км; 3 - глубина залегания фундамента более 2 км; 4 - главные разрывные нарушения; 5 - эпибайкальские плиты; 6 - каледониды; 7 - герциниды; 8 - эпипалеозойские плиты; 9 - герцинский краевой прогиб; 10 - альпиды; 11 - альпийские краевые прогибы; 12 - надвиги и покровы. Цифры в кружках - основные структурные элементы. Щиты: 1 - Балтийский, 2 - Украинский. Антеклизы: 3 - Белорусская, 4 - Воронежская. Своды Волга-Уральской антеклизы: 5 - Татарский, 6 - Токмовский. Синеклизы: 7 - Московская, 8 - Польско-Литовская, 9 - Прикаспийская. Эпибайкальские плиты : 10 - Тимано-Печорская, 11 - Мизийская. 12 - Складчатое сооружение Урала, 13 - Предуральский прогиб. Эпипалеозойские плиты: 14 - Западно-Сибирская, 15 - Скифская. Альпиды : 16 - Восточные Карпаты, 17 - Горный Крым, 18 - Большой Кавказ. Краевые прогибы : 19 - Предкарпатский, 20 - Западно-Кубанский, 21 - Терско-Каспийский

Западный склон Украинского щита, характеризовавшийся устойчивым прогибанием в палеозойское время, иногда выделяют как Приднестровский прогиб , на севере переходящий во Львовскую впадину. Последняя отделяется Ратненским выступом фундамента от Брестской впадины , ограниченной с севера Белорусской антеклизой.

Строение фундамента платформы

Архейские и частично нижнепротерозойские отложения, слагающие фундамент Восточно-Европейской платформы, представляют собой толщи первичноосадочных, вулканогенно-осадочных и вулканогенных пород, метаморфизованных в различной степени. Архейские образования характеризуются очень энергичной и специфической складчатостью, связанной с пластическим течением материала при высоких давлениях и температурах. Часто наблюдаются такие структуры, как гнейсовые купола, впервые выделенные П. Эскола в северном Приладожье. Фундамент платформы обнажается только на Балтийском и Украинском щитах, а на остальном пространстве, особенно в пределах крупных антеклиз, он вскрыт скважинами и хорошо изучен геофизически. Для расчленения пород фундамента важны данные определения абсолютного возраста.

В пределах Восточно-Европейской платформы известны древнейшие породы с возрастом до 3,5 млрд. лет и более, образующие крупные блоки в фундаменте, которые обрамлены более молодыми складчатыми зонами позднеархейского и раннепротерозойского возраста.

Выходы фундамента на поверхность . Поверхность Балтийского щита резко расчленена (до 0,4 км), но обнаженность из-за покрова четвертичных ледниковых отложений все же слабая. Изучение докембрия Балтийского щита связано с именами А. А. Полканова, Н. Г. Судовикова, Б. М. Куплетского, К. О. Кратца, С. А. Соколова, М. А. Гиляровой, шведского геолога Н. X. Магнуссона, финских - В. Рамсея, П. Эскола, А. Симонена, М. Хярме и многих других. В последнее время опубликованы работы А. П. Светова, К. О. Кратца, К. И. Хейсканена. Украинский щит перекрыт кайнозойскими отложениями и обнажен гораздо хуже Балтийского. Докембрий Украинского щита изучался Н. П. Семененко, Г. И. Каляевым, Н. П. Щербаком, М. Г. Распоповой и другими. В настоящее время произведен существенный пересмотр данных о геологическом строении Балтийского и Украинского щитов и закрытых территорий Русской плиты.

Архейские образования . На Балтийском щите в Карелии и на Кольском полуострове выходят на поверхность древнейшие отложения, представленные гнейсами и гранулитами с возрастом (явно радиометрически омоложенным) 2,8-3,14 млрд. лет. По-видимому, эти толщи слагают фундамент так называемых беломорид , образующих в Карелии и на юге Кольского полустрова зону северо-западного простирания, а на севере полуострова - Мурманский массив. Беломориды в составе керетской, хетоламбинской и лоухской свит в Карелии и тундровой и лебяжинской на Кольском полуострове представлены различными гнейсами, в том числе и глиноземистыми (лоухская свита), амфиболитами, пироксеновыми и амфиболовыми кристаллическими сланцами, диопсидовыми кальцифирами, коматиитами, друзитами и другими первичноосадочными и вулканогенными породами основного и ультраосновного состава с многочисленными интрузиями разной формы. Высокометаморфизованные толщи образуют гнейсовые купола, впервые описанные П. Эскола около Сортовалы, с пологим, почти горизонтальным залеганием отложений в сводовой части и сложной складчатостью по краям. Возникновение таких структурных форм возможно лишь на больших глубинах в условиях высоких температур и давлений, когда вещество приобретает способность к пластическим деформациям и течению. Может быть, гнейсовые купола "всплывают" подобно соляным диапирам. Значения абсолютного возраста для беломорид не опускаются древнее 2,4-2,7 млрд. лет. Однако эти данные, несомненно, дают слишком молодой возраст пород.

На нижнеархейских отложениях беломорид в Карелии залегает толща позднеархейского возраста (лопий ), представленная ультраосновными (коматиитами со структурой спинифекс), основными и реже средними и кислыми вулканическими породами, вмещающими массивы гипербазитов и плагиогранитов. Взаимоотношение этих протогеосинклинальных отложений мощностью более 4 км с комплексом основания не совсем ясно. Предполагавшиеся конгломераты в основании лопия скорее всего являются бластомилонитами. Формирование этих типично зеленокаменных отложений закончилось ребольской складчатостью на рубеже 2,6-2,7 млрд. лет.

Аналогом лопия на Кольском полуострове являются парагнейсы и высокоглиноземистые сланцы кейвской серии , а также различно метаморфизованные породы тундровой серии (на юго-востоке), хотя не исключено, что последние являются продуктами диафтореза более древних отложений.

На Украинском щите широко распространены древнейшие архейские комплексы пород, слагающие четыре крупных блока, отделенные разломами от нижнепротерозойских сланцево-железорудных толщ, слагающих узкие приразломные синклинорные зоны. Волыно-Подольский, Белоцерковский, Кировоградский, Днепровский и Приазовский блоки (с запада на восток) сложены разнообразными архейскими толщами, причем Белоцерковский и Днепровский блоки - это амфиболиты, метабазиты, джеспилиты конкско-верховецкой, белозерской серии, т. е. породы первичноосновного состава, метаморфизованные в условиях амфиболитовой, иногда гранулитовой фации и напоминающие отложения лопия Балтийского щита. Остальные блоки сложены в основном верхнеархейскими гранито-гнейсами, гранитами, мигматитами, гнейсами, анатектитами - в целом кислыми породами, кое-где с реликтами древнего основания.

На Воронежской антеклизе древнейшими породами, аналогами беломорид и днеприд, являются гнейсы и гранито-гнейсы обоянской серии . На них залегают метабазиты Михайловской серии , по-видимому, одновозрастной лопию и метабазитам приднепровской серии (табл. 2).

Нижнепротерозойские образования относительно слабо развиты в фундаменте платформы, в том числе и на щитах, и резко отличаются от древнейших архейских толщ, слагая линейные складчатые зоны либо изометричные прогибы. На Балтийском щите выше архейских комплексов с явным несогласием залегают толщи сумия и сариолия . Сумийские отложения ближе к орогенным формациям и представлены терригенными породами и метабазитами, тесно связанными с расположенными выше сариолийскими конгломератами, которые частично могут замещать толщи сумия. В последнее время выше лопия и ниже сумия К. И. Хейсканеным выделяется толща суомия , сложенная кварцитами, карбонатами, кремнистыми и амфиболовыми сланцами и апо-базальтовыми амфиболитами, занимающая стратиграфический интервал 2,6-2,7 - 2,0-2,1 млрд. лет, соответствующая сортавальской серии северного Приладожья и "морскому ятулию" Финляндии. По-видимому, сюда же относятся флишоидные отложения ладожской серии , залегающие выше сортавальской .

Сумийско-сариолийский комплекс - это существенно вулканогенная толща с конгломератами в верхней части, мощность ее до 2,5 км. Преобладающие первично базальтовые, андезито-базальтовые и реже более кислые вулканиты приурочены к грабенам, осложнявшим, по данным А. П. Светова, крупное сводовое поднятие. Конгломераты сариолия тесно связаны со структурами сумия, причем последние в северной Карелии прорываются К-Na-гранитами.

После слабых фаз селецкой складчатости , происходившей на рубеже 2,3 млрд. лет, район современного Балтийского щита вступает в

Таблица 2

Схема расчленения образований фундамента Восточно-Европейской платформы

новый этап своего развития, уже напоминающий платформенный. Накоплению сравнительно маломощных толщ ятулия, суйсария и вепсия предшествовало формирование коры выветривания. Ятулий представлен кварцевыми конгломератами, гравелитами, песчаниками, кварцитами со следами ряби и трещин усыхания. Осадочные континентальные породы переслаиваются с покровами базальтов. Отложения суйсария слагаются в низах глинистыми сланцами, филлитами, шунгитами, доломитами; в средней части - покровами оливиновых и толеитовых базальтов, пикритов, а в верхах - снова преобладают песчаники и туфосланцы. Еще выше располагаются конгломераты и полимиктовые песчаники вепсия с силлами габбро-диабазов (1,1 -1,8 млрд. лет). Общая мощность всех этих отложений составляет 1-1,2 км, и все они, залегающие почти горизонтально, прорываются гранитами рапакиви (1,67 млрд. лет).

Рис. 4. Принципиальная схема соотношений главных комплексов докембрийских (дорифейских) образований на Балтийском щите (в Карелии):

1 - протоплатформенный комплекс (ятулий, суйсарий, велсий) PR 1 2 ; 2 - протоорогенный комплекс (сумий, сариолий) PR 1 1 ; 3 - протогеосинклинальный комплекс (лопий, суомий?) AR 1 2 ; 4 - комплекс основания (беломориды и более древние) AR 1 1

Таким образом, в Карелии устанавливается довольно определенная последовательность дорифейских комплексов пород (рис. 4). Комплекс основания представлен серыми гнейсами и ультраметаморфическими толщами беломорид (нижний архей). Выше располагается зеленокаменный протогеосинклинальный лопийский комплекс (верхний архей), который с несогласием перекрывается проторогенной толщей сумия - сариолия и протоплатформенными отложениями ятулия, суйсария и вепсия. Намечается картина, близкая к фанерозойским геосинклиналям, но очень сильно растянутая во времени.

Нижнепротерозойские образования на Кольском полуострове представлены имандра-варзугской и печенгской зеленокаменными метабазитовыми сериями с корой выветривания в основании, слагающими узкие (5-15 км) приразломные прогибы, заключенные между архейскими блоками на севере и на юге, хотя не исключено, что северный Мурманский блок является мощной (1 км) аллохтонной пластиной, надвинутой с севера на более молодые образования. Отложения были дислоцированы в конце раннего протерозоя.

На Украинском щите нижний протерозой - это знаменитая криворожская серия , образующая узкие, наложенные на архейские комплексы приразломные синклинории, шириной в 10-50 км. Криворожская серия подразделяется на нижнюю терригенную толщу

Рис. 5. Геологический профиль рудной полосы Яковлевского месторождения, Воронежская антеклиза (по С. И. Чайкину):

1 - аллиты и переотложенные руды; 2 - мартитовые и железнослюдковые руды; 3 - гидрогематит-мартитовые руды; 4 - железнослюдково-мартитовые кварциты; 5 - гидрогематит-мартитовые железистые кварциты с прослоями сланцев; 6 - конгломераты: 7 - филлиты подрудной сланцевой свиты; 8 - надрудные филлиты; 9 - филлиты тонкополосчатые; 10 - разломы

(кварцито-песчаники, конгломераты, филлиты, графитовые сланцы); среднюю - железорудную, состоящую из ритмично чередующихся джеспилитов и сланцев, напоминающих флиш; верхнюю - в основном терригенную (конгломераты, гравелиты, кварциты). Общая мощность серии до 7-8 км, ее отложения прорываются гранитами с возрастом 2,1-1,8 млрд. лет.

Аналогом описанных образований на Воронежской антеклизе являются отложения также трехчленной курской серии с железорудной толщей в средней части, образующей узкие синклинорные зоны, ориентированные в меридиональном направлении и хорошо прослеживающиеся в магнитном аномальном поле (рис. 5). На востоке Воронежской антеклизы залегают более молодые терригенные и метабазитовые отложения воронцовской и лосевской серий , в составе которых есть обломки джеспилитов и большое количество стратиформных интрузий гипербазитов (мамоновский комплекс), с медноникелево-сульфидным оруденением.

Восточно-Европейская платформа (ВЕП)

5.1. Общая характеристика

Географически занимает территории Среднерусской и Среднеевропейской равнин, охватывая обширную территорию от Урала на востоке и почти до побережья Атлантического океана на западе. На этой территории расположены бассейны рек Волга, Дон, Днепр, Днестр, Неман, Печора, Висла, Одер, Рейн, Эльба, Дунай, Даугава и др.

На территории России ВЕП занимает Среднерусскую возвышенность, характеризующуюся преимущественно равнинным рельефом, с абсолютными отметками до 500 м. Только на Кольском полуострове и в Карелии проявлен горный рельеф с абсолютными отметками до 1 200 м.

Границами ВЕП являются: на востоке – Уральская складчатая область, на юге – структуры Средиземноморского складчатого пояса, на севере и северо-западе – структуры Скандинавских каледонид.

5.2. Основные структурные элементы

Как и любая платформа, ВЕП имеет двухъярусное строение.

Нижний ярус – это архейско-раннепротерозойский фундамент, верхний ярус – рифейско-кайнозойский чехол.

Фундамент на ВЕП залегает на глубинах от 0 до (по геофизическим данным) 20 км.

Фундамент на поверхность выходит в двух регионах: 1) в Карелии и на Кольском полуострове, где он представлен Балтийским щитом , занимающим также территории Финляндии, Швеции и части Норвегии; 2) в центральной Украине, где он представлен Украинским щитом . Область залегания фундамента на глубинах до 500 м в районе г. Воронеж называетсяВоронежским кристаллическим массивом .

Область распространения платформенного чехла рифейско-кайнозойского возраста называется Русской плитой .

Основные структуры Восточно-Европейской платформы показаны на рис. 4.

Рис. 4. Основные структуры Восточно-Европейской платформы

1. Граница платформы. 2. Границы основных структур. 3. Южная граница Скифской плиты. 4. Докембрийские авлакогены. 5. Палеозойские авлакогены. Цифры в кружках обозначают названия структур, не подписанные на схеме: 1-9 – авлакогены (1 – Беломорский, 2 – Лешуконский, 3 – Вожже-Лачский, 4 – Среднерусский, 5 – Кажимский, 6 – Калтасинсикй, 7 – Серноводско-Абдулинский, 8 – Пачелмский, 9 – Печоро-Колвинский); 10 – Московский грабен; 11 – Ижма-Печорская впадина; 12 – Хорейверская впадина; 13 – Предкавказский краевой прогиб; 14-16 – седловины (14 – Латвийская, 15 – Жлобинская, 16 – Полесская).

Областям относительно глубокого (более 2 км) залегания фундамента отвечают пологие отрицательные структуры – синеклизы .

Московская ,занимающая центральную часть плиты; 2) Тимано-Печорская (Печорская) , расположенная на северо-востоке плиты, между структурами Урала и Тиманским кряжем; 3) Прикаспийская , расположенная на юго-востоке плиты, занимающая междуречье Волги и Эмбы, на склонах Волго-Уральской и Воронежской антеклиз.

Областям относительно приподнятого положения фундамента отвечают пологие положительные структуры – антеклизы .

Главнейшими из них являются: 1) Воронежская , расположенная над одноименным кристаллическим массивом; 2) Волго-Уральская , расположенная в восточной части плиты, ограниченная с востока структурами Урала, с севера Тиманским кряжем, с юга – Прикаспийской синеклизой, с юго-запада Воронежской антеклизой, с запада – Московской синеклизой.

В пределах синеклиз и антеклиз выделяются структуры более высоких порядков, такие как валы, своды, впадины и прогибы.

Тимано-Печорской, Прикаспийской синеклизам и Волго-Уральской антеклизе отвечают одноименные нефтегазоносные провинции.

Между Украинским щитом и Воронежским кристаллическим массивом (и одноименной антеклизой) расположен Днепровско-Донецкий (Припятско-Донецкий) авлакоген – это узкая структура грабенообразного погружения фундамента и увеличенной (до 10-12 км) мощности пород чехла, имеющая запад-северо-западное простирание.

5.3. Строение фундамента

Фундамент платформы образован архейскими и раннепротерозойскими комплексами глубокометаморфизованных пород. Их первичный состав не всегда расшифровываются однозначно. Возраст пород определяется по данным абсолютной геохронологии.

Балтийский щит . Занимает северо-западную часть платформы, и граничит со складчатыми структурами Скандинавских каледонид по разломам глубокого заложения, имеющим надвиговую природу. К югу и юго-востоку фундамент ступенчато погружается под рифейско-кайнозойский чехол Русской плиты.

Комплексы раннего архея (кольская серияAR 1 )в разных блоках Балтийского щита представлены разнообразными гнейсами, кристаллическими сланцами, железистыми (магнетитовыми) кварцитами, амфиболитами, мраморами, мигматитами. Среди гнейсов выделяются следующие разновидности: амфиболовые, биотитовые, высокоглиноземистые (с кианитом, андалузитом, силлиманитом). Вероятным протолитом амфиболитов и амфиболовых гнейсов являются породы типа базитов (базальтоиды и габброиды), высокоглиноземистых гнейсов – осадочные породы типа глинистых осадков, магнетитовых кварцитов – железисто-кремнистые отложения (типа яшмоидов), мраморов – карбонатные отложения (известняки, доломиты). Мощность образований AR 1 не менее 10-12 км.

Образования раннего архея (AR 1 ) формируют структуры типа гнейсовых куполов, в центральных частях которых располагаются крупные массивы олигоклазовых и микроклиновых гранитов, с которыми связаны пегматитовые поля.

Комплексы позднего архея (AR 2 ) слагают узкие синклинорные зоны в образованиях AR 1 . Они представлены высокоглиноземистыми гнейсами и сланцами, конгломератами, амфиболитами, карбонатными породами, магнетитсодержащими кварцитами. Мощность образований AR 2 не менее 5-6 км.

Образования раннего протерозоя (PR 1 ) мощностью не менее 10 кмвыполняют узкие грабен-синклинальные структуры, врезанные в архейский субстрат. Они представлены конгломератами, песчаниками, алевролитами, аргиллитами, метаморфизованными субщелочными базальтоидами, кварцито-песчаникми, гравелитами, местами доломитами, а также шунгитами (высокоуглеродистые метаморфизованные породы типа сланцев).

Образования PR 1 прорваны одновозрастными интрузиями габброноритов печенгского комплекса с медно-никелевым оруденением, щелочными ультраосновными породами с карбонатитами, содержащими апатит-магнетитовые руды с флогопитом, а также более молодыми (рифейскими) гранитами-рапакиви (Выборгский массив) и нефелиновыми сиенитами девонского возраста. Последние представлены расслоенными концентрически зональными массивами: Хибинским с месторождениями апатит-нефелиновых руд и Ловозерским с месторождениями тантало-ниобатов.



На Балтийском щите пробурена самая глубокая в мире Кольская сверхглубокая скважина (СГ-3) глубиной 12 261 м (проектная глубина скважины – 15 000 м). Скважина пробурена в северо-западной части Кольского полуострова, в 10 км южнее г. Заполярный (Мурманская область), вблизи российско-норвежской границы. Бурение скважины начато в 1970 г. и закончено в 1991 г.

Скважина бурилась по программе глубокого и сверхглубокого бурения, осуществляемого в СССР по решениям Правительства.

Целью бурения СГ-3 являлось изучение глубинного строения докембрийских структур Балтийского щита, типичных для фундаментов древних платформ и оценка их рудоносности.

Задачами проходки скважины являлось :

1. Изучение глубинного строения протерозойского никеленосного печенгского комплекса и архейского кристаллического основания Балтийского щита, выяснение особенностей проявления на больших глубинах геологических процессов, включая процессы рудообразования.

2. Выяснение геологической природы сейсмических границ в континентальной земной коре и получение новых данных о тепловом режиме недр, глубинных водных растворах и газах.

3. Получение максимально полной информации о вещественном составе горных пород и их физическом состоянии, вскрытие и изучение пограничной зоны между «гранитным» и «базальтовым» слоями земной коры.

4. Усовершенствование имеющихся и создание новых технологий и технических средств для бурения и комплексных геофизических исследований сверхглубоких скважин.

Скважина бурилась с полным отбором керна, выход которого составил 3 591,9 м (29,3%).

Основные результаты бурения следующие .

1. В интервале 0 – 6 842 м вскрыты метаморфические образования PR 1 , состав которых примерно тот же, о котором речь шла выше. На глубинах 1 540-1 810 м вскрыты тела базитов с сульфидными медно-никелевыми рудами, что опровергло представление о выклинивании рудоносного печенгского комплекса и расширило перспективы Печенгского рудного поля.

2. В интервале 6 842 – 12 261 м вскрыты метаморфические образования AR, состав и строение которых примерно те же, о которых речь шла выше. На глубинах свыше 7 км в архейских гнейсах вскрыто несколько горизонтов магнетит-амфиболовых пород – аналогов железистых кварцитов Оленегорского и Костомукшского месторождений. На глубине около 8,7 км вскрыты габброиды с титаномагнетитовой минерализацией. В интервале 9,5 – 10,6 км в архейских образованиях установлен 800-метровый интервал с высокими (до 7,4 г/т) содержаниями золота, а также серебра, молибдена, висмута, мышьяка и некоторых других элементов, связанных с процессами гидрогенно-геохимического разуплотнения архейских пород.

3. Предполагаемая на глубинах около 7,5 км геофизическая граница (поверхность) Конрада (граница «гранитного» и «базальтового» слоев) не подтвердилась. Сейсмическая граница на этих глубинах отвечает зоне разуплотнения пород в архейских образованиях и вблизи границы архей-нижний протерозой.

4. На всем протяжении разреза скважины установлены притоки воды и газов, содержащих гелий, водород, азот, метан, тяжелые углеводороды. Исследования изотопного состава углерода показали, что в архейских толщах газы имеют мантийную природу, протерозойских – биогенную. Последнее может свидетельствовать о возможном зарождении биологических процессов, приведших в последствии к возникновению жизни на Земле, уже в раннем протерозое.

5. К числу принципиально новых относятся данные по изменениям температурного градиента. До глубины 3 000 м температурный градиент составляет 0,9-1 о /100 м. Глубже этот градиент возрос до 2-2,5 о /100 м. В итоге на глубине 12 км температура составила 220 о вместо ожидаемой 120-130 о.

В настоящее время Кольская скважина функционирует в режиме геолаборатории, являясь полигоном для испытания техники и технологии глубокого и сверхглубокого бурения и геофизического исследования скважин.

Украинский щит . Представляет собой крупный выступ фундамента, имеющий форму неправильного овала. С севера он ограничен разломами, по которым контактирует с Днепровско-Донецким авлагогеном, а в южном направлении погружается под отложения платформенного чехла.

В строении щита принимают участие метаморфические породы AR 1 , AR 2 и PR 1 .

Комплексы раннего архея (AR 1 )представлены плагиогнейсами, биотит-плагиоклазовыми, амфибол-плагиоклазовыми, высокоглиноземистыми (силлиманитовыми и корундовыми) гнейсами, кристаллическими сланцами, амфиболитами, мигматитами, кварцитами.

В строении комплексов позднего архея (AR 2 ) участвуют разнообразные гнейсы, амфиболиты, хлоритовые сланцы, железистые кварциты и роговики. Эти образования образуют узкие синклинорные зоны, врезанные в раннеархейский субстрат. Мощность образований AR не менее 5-7 км.

К образованиям раннего протерозоя (PR 1 )относится криворожская серия , вмещающая железорудные месторождения формации железистых кварцитов Криворожского бассейна.

Эта серия обладает трехчленным строением. В ее нижней части залегают аркозовые метапесчаники, кварциты, филлиты. Средняя часть серии сложена, в основном, переслаивающимися джеспилитами, куммингтонитовыми, серицитовыми, хлоритовыми сланцами. В этой части серии расположены основные промышленные железорудные залежи Криворожского бассейна; количество рудных пластов в разных частях бассейна колеблется от 2 до 7. Верхняя часть серии сложена кварцито-песчаниками с осадочно-метаморфизованными железными рудами, кварцево-углеродистыми, слюдистыми, биотит-кварцевыми и двуслюдяными сланцами, карбонатными породами, метапесчаниками. Общая мощность образований криворожской серии не менее 5-5,5 км.

Среди комплексов AR и PR расположены крупные массивы архейского и раннепротерозойского возраста: гранитов (Уманский, Криворожский и др.), сложные многофазные плутоны, состав которых меняется от габбро-анортозитов, лабрадоритов до гранитов-рапакиви (Коростеньский и др.), а также массивы нефелиновых сиенитов (Мариупольский) с тантало-ниобиеввой минерализацией.

Воронежский кристаллический массив . Расположен на глубинах до 500 м. Изучен в связи с геологоразведочными и эксплуатационными работами на железные руды Курской магнитной аномалии (КМА).

Архейские (AR )образования представлены здесь разнообразными гнейсами, амфиболитами, железистыми роговиками, кристаллическими сланцами.

Образования раннего протерозоя (PR 1 ) выделены как курская и оскольская серии . В составе курской серии представлены: в нижней части чередующиеся метапесчаники, кварциты, гравелиты, в верхней части – чередующиеся филлиты, двуслюдяные, биотитовые сланцы, горизонты железистых кварцитов, к которым приурочены месторождения КМА. Мощность образований курской серии не менее 1 км. Залегающая выше оскольская серия мощностью 3,5-4 км образована углеродистыми сланцами, метапесчаниками, метабазальтами.

Среди толщ AR и PR расположены массивы одновозрастных интрузивных пород, представленные гранитами, габброноритами с медно-никелевым оруденением, граносиенитами.

5.4. Строение чехла

В строении чехла Русской плиты выделены 5 структурно-стратиграфических комплексов (снизу вверх): рифейский, венд-кембрийский, раннепалеозойский (ордовикско-раннедевонский), средне-позднепалео-зойский (среднедевонско-пермский), мезозойско-кайнозойский (триас-кайнозойский).

Рифейский комплекс

Рифейские толщи распространены в центральных и окраинных частях платформы. Наиболее полные разрезы рифея расположены на западном Урале, о которых речь будет идти при рассмотрении этого региона. Рифей центральной части платформы представлен всеми тремя отделами.

Ранний рифей (RF 1 ). В его нижней части залегают красноцветные кварцевые и кварц-полевошпатовые песчаники с горизонтами базальтов траппового типа. Вверх по разрезу они сменяются темными аргиллитами с прослоями мергелей, доломитов и алевролитов. Еще выше залегает мощная толща доломитов с прослоями аргиллитов. Мощность около 3,5 км.

Средний рифей (RF 2 ). Представлен преимущественно сероцветными песчаниками с прослоями доломитов и базальтов траппового типа общей мощностью около 2,5 км. В стратифицированном разрезе залегают пластовые тела долеритов, габбродолеритов.

Поздний рифей (RF 3 ). В его основании залегают кварцевые и кварц-полевошпатовые песчаники, выше – красные аргиллиты и алевролиты с прослоями доломитов, еще выше – чередование аргиллитов, алевролитов, песчаников и доломитов; завершается разрез доломитами. Общая мощность около 2 км.