Волновая функция и ее статистический смысл. Условие нормировки волновой функции. Физический смысл волновой функции

Для описания корпускулярно-волновых свойств электрона в квантовой механике используют волновую функцию, которая обозначается греческой буквой пси (Т). Главные свойства волновой функции таковы:

  • в любой точке пространства с координатами х, у, z она имеет определенные знак и амплитуду: ЧДд:, у , г);
  • квадрат модуля волновой функции | ЧДх, y,z) | 2 равен вероятности нахождения частицы в единице объема, т.е. плотности вероятности.

Плотность вероятности обнаружения электрона на различных расстояниях от ядра атома изображают несколькими способами. Часто ее характеризуют числом точек в единице объема (рис. 9.1, а). Точечное изображение плотности вероятности напоминает облако. Говоря об электронном облаке, следует иметь в виду, что электрон - это частица, проявляющая одновременно и корпускулярные, и волновые

Рис. 9.1.

свойства. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность его обнаружения велика или даже максимальна.

На рис. 9.1, а штриховой линией обозначена сферическая поверхность, внутри которой вероятность обнаружения электрона составляет 90%. На рис. 9.1, б приведено контурное изображение электронной плотности в атоме водорода. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона 10%, вероятность же обнаружения электрона внутри второго от ядра контура составляет 20%, внутри третьего - 30% и т.д. На рис. 9.1, в электронное облако изображено в виде сферической поверхности, внутри которой вероятность обнаружения электрона составляет 90%.

Наконец, на рис. 9.1, г и б двумя способами показана вероятность обнаружения электрона Is на разных расстояниях г от ядра: вверху показан «разрез» этой вероятности, проходящий через ядро, а внизу - сама функция 4лг 2 |У| 2 .

Уравнение Шрёдингсра. Это фундаментальное уравнение квантовой механики было сформулировано австрийским физиком Э. Шрёдингером в 1926 г. Оно связывает полную энергию частицы Е, равную сумме потенциальной и кинетической энергий, потенциальную энергию?„, массу частицы т и волновую функцию 4*. Для одной частицы, например электрона массой т е, оно имеет следующий вид :

С математической точки зрения это уравнение с тремя неизвестными: У, Е и?„. Решить его, т.е. найти эти неизвестные, можно, если решать его совместно с двумя другими уравнениями (для нахождения трех неизвестных требуется три уравнения). В качестве таких уравнений используют уравнения для потенциальной энергии и граничных условий.

Уравнение потенциальной энергии не содержит волно- вую функцию У. Оно описывает взаимодействие заряженных частиц по закону Кулона. При взаимодействии одного электрона с ядром, имеющим заряд +z, потенциальная энергия равна

где г = У* 2 + у 2 + z 2 .

Это случай так называемого одноэлектронного атома. В более сложных системах, когда заряженных частиц много, уравнение потенциальной энергии состоит из суммы таких же кулоновских членов.

Уравнением граничных условий является выражение

Оно означает, что волновая функция электрона стремится к нулю на больших расстояниях от ядра атома.

Решение уравнения Шрёдингера позволяет найти волновую функцию электрона? = (х, у , z) как функцию координат. Это распределение называется орбиталью.

Орбиталь - это заданная в пространстве волновая функция.

Система уравнений, включающая уравнения Шрёдингера, потенциальной энергии и граничных условий, имеет не одно, а много решений. Каждое из решений одновременно включает 4 х = (х, у , г) и Е , т.е. описывает электронное облако и соответствующую ему полную энергию. Каждое из решений определяется квантовыми числами.

Физический смысл квантовых чисел можно понять, рассмотрев колебания струны, в результате которых образуется стоячая волна (рис. 9.2).

Длина стоячей волны X и длина струны b связаны уравнением

Длина стоячей волны может иметь лишь строго определенные значения, отвечающие числу п, которое принимает только целочисленные неотрицательные значения 1,2,3 и т.д. Как очевидно из рис. 9.2, число максимумов амплитуды колебаний, т.е. форма стоячей волны, однозначно определяется значением п.

Поскольку электронная волна в атоме представляет собой более сложный процесс, чем стоячая волна струны, значения волновой функции электрона определяются не одним, а че-


Рис. 9.2.

тырьмя числами, которые называются квантовыми числами и обозначаются буквами п, /, т и s. Данному набору квантовых чисел п, /, т одновременно отвечают определенная волновая функция Ч"лДл, и полная энергия E„j. Квантовое число т при Е не указывают, так как в отсутствие внешнего поля энергия электрона от т не зависит. Квантовое число s не влияет ни на 4* п хт, ни на E n j.

  • , ~ elxv dlxv 62*p
  • Символы --, --- означают вторые частные производные от fir1 дуг 8z2 Ч"-функции. Это производные от первых производных. Смысл первой производной совпадает с тангенсом угла наклона функции Ч" от аргумента х, уили z на графиках? = j(x), Т =/2(у), Ч" =/:!(z).

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения таких частиц. Теория, охватывающая все свойства элементарных частиц, должна учитывать не только их корпускулярные свойства, но и волновые. Из опытов, рассмотренных ранее, следует, что пучок элементарных частиц обладает свойствами плоской волны, распространяющейся в направлении скорости частиц. В случае распространения вдоль оси этот волновой процесс может быть описан уравнением волны де Бройля (7.43.5):

(7.44.1)

где – энергия, – импульс частицы. При распространении в произвольном направлении :

(7.44.2)

Назовем функцию волновой функцией и выясним ее физический смысл путём сравнения дифракции световых волн и микрочастиц.

Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задаётся квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность же больше там, где больше число частиц. Таким образом, дифракционная картина для микрочастиц является проявлением статистической закономерности и можно говорить, что знание вида волны де Бройля, т.е. Ψ -функции, позволяет судить о вероятности того или иного из возможных процессов.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объёмом равна

(7.44.3)

Величина

(7.44.4)

имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объёме в окрестности заданной точки. Таким образом, физический смысл имеет не сама - функция, а квадрат её модуля , которым задаётся интенсивность волн де Бройля. Вероятность найти частицу в момент времени в конечном объёме , согласно теореме сложения вероятностей, равна

(7.44.5)

Так как частица существует, то она обязательно где-то обнаруживается в пространстве. Вероятность достоверного события равна единице, тогда


. (7.44.6)

Выражение (7.44.6) называется условием нормировки вероятности. Волновая функция , характеризующая вероятность обнаружения действия микрочастицы в элементе объёма, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

3. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

3.1.Волновая функция

Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волны состоит в том, что она обнаруживается как неделимое целое. Например, никто не наблюдал полэлектрона. В тоже время волну можно разделить на части и затем воспринимать каждую часть в отдельности.

Отличие микрочастицы в квантовой механике от обычной микрочастицы заключается в том, что она не обладает одновременно определенными значениями координат и импульса, поэтому понятие траектории для микрочастицы утрачивает смысл.

Распределение вероятности нахождения частицы в данный момент времени в некоторой области пространства будем описывать волновой функцией (x , y , z , t ) (пси-функция). Вероятность dP того, что частица находится в элементе объема dV , пропорциональная
и элементу объемуdV :

dP =
dV .

Физический смысл имеет не сама функция
, а квадрат ее модуля – это плотность вероятности. Она определяет вероятность пребывания частицы в данной точке пространства.

Волновая функция
является основной характеристикой состояния микрообъектов (микрочастиц). С ее помощью в квантовой механике могут быть вычислены средние значения физических величин, которые характеризуют данный объект, находящийся в состоянии, описываемом волновой функцией
.

3.2. Принцип неопределенности

В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность микрочастиц состоит в том, что не для всех переменных получаются при измерениях определенные значения. Например, частица не может иметь одновременно точных значений координаты х и компоненты импульсар х . Неопределенность значенийх ир х удовлетворяет соотношению:

(3.1)

– чем меньше неопределенность координаты Δх , тем больше неопределенность импульса Δр х , и наоборот.

Соотношение (3.1) называется соотношением неопределенности Гейзенберга и было получено в 1927 г.

Величины Δх и Δр х называются канонически сопряженными. Такими же канонически сопряженными являются Δу и Δр у , и т.п.

Принцип неопределенности Гейзенберга гласит: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка ħ.

Энергия и время тоже являются канонически сопряженными, поэтому
. Это означает, что определение энергии с точностью ΔЕ должно занять интервал времени:

Δt ~ ħ/ ΔЕ .

Определим значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Δх , расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель ее составляющая импульсар х имеет точное значение,р х = 0 (щель перпендикулярна к вектору импульса), поэтому неопределенность импульса равна нулю, Δр х = 0, зато координатах частицы является совершенно неопределенной (рис.3.1).

Вмомент прохождения частицы через щель положение меняется. Вместо полной неопределенности координатых появляется неопределенность Δх , и появляется неопределенность импульса Δр х .

Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2φ , гдеφ – угол, соответствующий первому дифракционному минимуму (максимумами высших порядков пренебрегаем, т.к. их интенсивность мала по сравнению с интенсивностью центрального максимума).

Таким образом, появляется неопределенность:

Δр х =р sinφ ,

но sinφ = λ / Δх – это условие первого минимума. Тогда

Δр х ~рλ/ Δх ,

Δх Δр х ~рλ = 2πħ ħ/ 2.

Соотношение неопределенностей указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Движение по траектории характеризуется определенными значениями скорости частицы и ее координат в каждый момент времени. Подставив в соотношение неопределенностей вместо р х выражение для импульса
, имеем:

чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, тем с большей точностью применимы к ней понятия траектории.

Например, для микрочастицы размером 1·10 -6 м неопределенности Δх и Δ выходят за пределы точности измерения этих величин, и движение частицы неотделимо от движения по траектории.

Соотношение неопределенностей является фундаментальным положением квантовой механики. Оно, например, позволяет объяснить тот факт, что электрон не падает на ядро атома. Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона Δr и неопределенность импульса Δр удовлетворяли соотношению

Δr Δp ħ/ 2,

и значение r = 0 невозможно.

Энергия электрона в атоме будет минимальна при r = 0 и р = 0, поэтому для оценки наименьшей возможной энергии положим Δr r , Δp p . Тогда Δr Δp ħ/ 2, и для наименьшего значения неопределенности имеем:

нас интересует только порядок величин, входящих в это соотношение, поэтому множитель можно отбросить. В этом случае имеем
, отсюдар = ħ/ r . Энергия электрона в атоме водорода

(3.2)

Найдем r , при котором энергия Е минимальна. Продифференцируем (3.2) и приравняем производную к нулю:

,

численные множители в этом выражении мы отбросили. Отсюда
- радиус атома (радиус первой боровской орбиты). Для энергии имеем

Можно подумать, что с помощью микроскопа удастся определить положение частицы и тем самым ниспровергнуть принцип неопределенности. Однако микроскоп позволит определить положение частицы в лучшем случае с точностью до длины волны используемого света, т.е. Δх ≈ λ , но т.к. Δр = 0, то Δр Δх = 0 и принцип неопределенности не выполняется?! Так ли это?

Мы пользуемся светом, а свет, согласно квантовой теории, состоит из фотонов с импульсом р = k . Чтобы обнаружить частицу, на ней должен рассеяться или поглотиться хотя бы один из фотонов пучка света. Следовательно, частице будет передан импульс, по крайней мере достигающей h . Таким образом, в момент наблюдения частицы с неопределенностью координаты Δх ≈ λ неопределенность импульса должна быть Δр ≥ h .

Перемножая эти неопределенности, получаем:

принцип неопределенности выполняется.

Процесс взаимодействия прибора с изучаемым объектом называется измерением. Этот процесс протекает в пространстве и во времени. Существует важное различие между взаимодействием прибора с макро- и микрообъектами. Взаимодействие прибора с макрообъектом есть взаимодействие двух макрообъектов, которое достаточно точно описывается законами классической физики. При этом можно считать, что прибор не оказывает на измеряемый объект влияния, либо это влияние мало. При взаимодействии прибора с микрообъектами возникает иная ситуация. Процесс фиксации определенного положения микрочастицы вносит в ее импульс изменение, которое нельзя сделать равным нулю:

Δр х ≥ ħ/ Δх.

Поэтому воздействие прибора на микрочастицу нельзя считать малым и несущественным, прибор изменяет состояние микрообъекта – в результате измерения определенные классические характеристики частицы (импульс и др.) оказываются заданными лишь в рамках, ограниченных соотношением неопределенностей.

3.3.Уравнение Шредингера

В 1926 г. Шредингер получил свое знаменитое уравнение. Это основное уравнение квантовой механики, основное предположение, на котором основана вся квантовая механика. Все вытекающие из этого уравнения следствия согласуются с опытом – в этом его подтверждение.

Вероятностное (статистическое) истолкование волн де Бройля и соотношение неопределенностей указывают, что уравнение движения в квантовой механике должно быть таким, чтобы оно позволило объяснить наблюдаемые на опыте волновые свойства частиц. Положение частицы в пространстве в данный момент времени определяется в квантовой механике заданием волновой функции
(x , y , z , t ), а точнее квадратом модуля этой величины.
– это вероятность нахождения частицы в точкеx , y , z в момент времени t . Основное уравнение квантовой механики должно быть уравнением относительно функции
(x , y , z , t ). Далее, это уравнение должно быть волновым, из него должны получить свое объяснение эксперименты по дифракции микрочастиц, подтверждающие их волновую природу.

Уравнение Шредингера имеет следующий вид:

. (3.3)

где m – масса частицы, i – мнимая единица,
– оператор Лапласа,
,U – оператор потенциальной энергии частицы.

Вид Ψ-функции определяется функцией U , т.е. характером сил, действующих на частицу. Если силовое поле стационарно, то решение уравнения имеет вид:

, (3.4)

где Е – полная энергия частицы, она остается постоянной при каждого состояния, Е= const .

Уравнение (3.4) называется уравнением Шредингера для стационарных состояний. Его еще можно записать в виде:

.

Это уравнение применимо к нерелятивистским системам при условии, что распределение вероятностей не меняется во времени, т.е. когда функции ψ имеют вид стоячих волн.

Уравнение Шредингера можно получить следующим образом.

Рассмотрим одномерный случай – свободно движущуюся частицу по оси х . Ей соответствует плоская волна де Бройля:

,

но
, поэтому
. Продифференцируем это выражение поt :

.

Найдем теперь вторую производную от пси-функции по координате

,

В нерелятивистской классической механике энергия и импульс связаны соотношением:
где Е – кинетическая энергия. Частица движется свободно, ее потенциальная энергия U = 0, и полная Е=Е k . Поэтому

,

– это уравнение Шредингера для свободной частицы.

Если частица движется в силовом поле, то Е – вся энергия (и кинетическая, и потенциальная), поэтому:

,

тогда получим
, или
,

и окончательно

Это уравнение Шредингера.

Приведенные рассуждения – не вывод уравнения Шредингера, а пример того, как это уравнение можно установить. Само же уравнение Шредингера постулируется.

В выражении

левая часть обозначает оператор Гамильтона– гамильтониан – это сумма операторов
иU . Гамильтониан – это оператор энергии. Подробно об операторах физических величин будем говорить в дальнейшем. (Оператор выражает некоторое действие под функцией ψ , которая стоит под знаком оператора). С учетом сказанного имеем:

.

Физический смысл имеет не сама ψ -функция, а квадрат ее модуля, определяющий плотность вероятности нахождения частицы в данном месте пространства. Квантовая механика имеет статистический смысл. Она не позволяет определить местонахождение частицы в пространстве или траекторию, по которой движется частица. Пси-функция лишь дает вероятность, с какой частица может быть обнаружена в данной точке пространства. В связи с этим пси-функция должна удовлетворять следующим условиям:

Она должна быть однозначной, непрерывной и конечной, т.к. определяет состояние частицы;

Она должна иметь непрерывную и конечную производную;

Функция Iψ I 2 должна быть интегрируема, т.е. интеграл

должен быть конечным, так как он определяет вероятность обнаружения частицы.

Интеграл

,

Это условие нормировки. Оно означает, что вероятность того, что частица находится в какой-нибудь из точек пространства, равна единице.

Волновая функция и ее физический смысл.

Какой физический смысл следует придать введенной нами волновой функции?

Мы уже обсуждали это вопрос и пришли к выводу, что это поле определяет вероятность обнаружить частицу в различных точках пространства в заданный момент времени. Точнее, квадрат модуля волновой функции есть плотность вероятности обнаружить частицу в точке с координатой в момент времени t :

(17.15)

Естественно полагать, что где-то в пространстве частица достоверно существует. По-

этому волновая функция должна удовлетворять следующему условию нормировки

(17.16)

Здесь интеграл берется по области определения волновой функции, как правило, это все бесконечное пространство. Таким образом, состояния частицы должны описываться функциями с интегрируемым квадратом модуля.

Здесь нас ожидает «неприятность». Единственная волновая функция, которую мы уже знаем, это волна де Бройля, соответствующая частице с заданным значением импульса. Поскольку для этой волны

ng w:val="EN-US"/>1"> (17.17)

то нормировочный интеграл, очевидно, расходится. С другой стороны, такая ситуация

понятна. Если импульс известен точно (а для волны де Бройля это именно так), то из соотношения неопределенностей для неопределенности координаты получаем

(17.18)

т.е. частица делокализована по всему бесконечному пространству. Именно такое абсолютно делокализованное состояние и задает плоская волна. Конечно, к реальному состоянию частицы плоская волна прямого отношения не имеет. Это математическая абстракция. Любой физический процесс происходит, может быть и в макроскопически большой, но ограниченной области пространства. Поэтому мы можем утверждать, что состояние частицы с точно определенным значением импульса принципиально невозможно, а волновая функция вида (17.1) или (17.7) не описывает никакого состояния реаль ного физического объекта. С другой стороны, если волновой пакет достаточно широкий, т.е. его пространственной размер много больше длин волн де Бройля его образующих, приближение плоской волны часто оказывается очень удобным с математической точки зрения.

Таким образом, помимо функций с интегрируемым квадратом модуля в квантовой механике бывает удобно работать и с функциями, которые условию нормировки

(6.16) не удовлетворяют. Рассмотрим вопрос о нормировке таких функций на примере состояния (6.1). Мы опять для простоты ограничимся одномерным случаем. Будем считать, что состояние в виде плоской волны

(17.19)

(A = - нормировочная константа, индекс « p » указывает, что это состояние с импульсом p ) задано на отрезке x ∈(− L/ 2, L/ 2). Мы полагаем, что L велико и в дальнейшем перейдем к пределу L →∞.

Рассмотрим значение следующего интеграла

(17.20)

Вычисление интеграла (17.20) дает

Здесь Δk = (p p ") h . При Δk ≠ 0 в пределе L →∞ получаем, что I →0 , т.е. волновые функции состояний с различными значениями импульса становятся ортогональны друг другу. В случае Δk ≡ 0 получаем, что I = 1 для любого конечного сколь угодно большого значения L , т.е. условие нормировки (17.16) оказывается выполненным. Указанная процедура может быть использована при решении конкретных задач, однако не совсем удобна, так как в исходной функции (17.19) появился нормировочный размер L . Поэтому обычно поступают немного иначе. Пусть нормировочная константа A = 1. Тогда вычисление интеграла (17.21) в пределе L →∞ дает

Мы здесь использовали известные соотношения

Отсюда возникает условие нормировки на δ - функцию:

где (17.23)

В трехмерном случае аналогично получаем (17.24)

причем (17.25)

Условие нормировки на δ - функцию используется в квантовой теории всякий раз, когда

волновая функция не может быть нормирована согласно условию (17.16).

Опыт Франка-Герца

Опыт Франка - Герца - опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C 1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V , ускоряющая электроны, и снимается вольт-амперная характеристика. К сетке C 2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост тока I при увеличении ускоряющего напряжения вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg, и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эВ значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

Принцип Паули.

На первый взгляд представляется, что в атоме все электроны должны заполнить уровень с наименьшей возможной энергией. Опыт же показывает, что это не так.

Действительно, в соответствии с принципом Паули, в атоме не может быть электронов с одинаковыми значениями всех четырёх квантовых чисел.
Каждому значению главного квантового числа п соответствует 2п 2 состояний, отличающихся друг от друга значениями квантовых чисел l, m и m S .

Совокупность электронов атома с одинаковыми значения квантового числа п образует так называемую оболочку. В соответствии с номером п

Таблица 18. 1

Оболочки подразделяются на подоболочки , отличающиеся квантовым числом l . Число состояний в подоболочке равно 2(2l + 1).
Различные состояния в подоболочке отличаются значениями квантовых чисел т и m S .

Таблица 18. 2

Понимание периодической системы элементов основано на идее об оболочечной структуре электронного облака атома.

Каждый следующий атом получается из предыдущего добавлением заряда ядра на единицу (е ) и добавлением одного электрона, который помещают в разрешённое принципом Паули состояние с наименьшей энергией.