Современные проблемы науки и образования. Тяжелые металлы в почве, пдк, одк Предельно-допустимая концентрация свинца для водной среды

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах.

В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: Vа, Сr, Мn, Fе, Со, Ni, Сu, Zn, Мо, Sn, Нg, Рb, Вe и др.

При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации.

Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . Таким образом, к тяжелым металлам относятся: Cr, Мn, Fе, Со, Ni, Сu, Zn, Мо, Нg, Рb, Вe.

Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества.

Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ.

Так, в ставших уже классическими работах Ю. А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы поименованы Рb, Нg, Cu.

С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, Hg и Pb были отнесены к тяжелым металлам.

По определению Н. Реймерса отдельно от тяжелых металлов стоят благородные и редкие металлы, соответственно, остаются только Рb, Сu, Zn, Ni, Со, Sn, Be, Нg.

В прикладных работах к числу тяжелых металлов чаще всего добавляют Pt, Au, Mn.

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (рН, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами.

Соответственно, как каталитические свойства металлов, так и доступность их для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах.

Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния.

Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три следствия:

1. Может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;

2. Мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;

3. Токсичность металла в результате комплексообразования может сильно измениться.

Так, хелатные формы Сu, Pb и Нg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм.

Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением.

Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное.

Ванадий

Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефти, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек от 0,2 до 4,5 мкг/дм 3 , в морской воде – в среднем 2,0 мкг/дм 3

В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДК ванадия составляет 0,1 мг/дм 3 (лимитирующий показатель вредности – санитарно-токсикологический) .

Висмут

Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм 3 , в морских водах – 0,02 мкг/дм 3 . ПДК составляет 0,1 мг/дм 3 .

Железо

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0,45 мк. Она представляет собой преимущественно железосодержащие минералы, гидрат оксида железа и соединения железа, сорбированные на взвесях.

Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплекса и комплексов с растворенными неорганическими и органическими веществами природных вод.

В ионной форме мигрирует главным образом Fе (II), а Fе (III) в отсутствие комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.

В результате химического и биохимического (при участии железобактерий) окисления Fе (II) переходит в Fе (III), который, гидролизуясь, выпадает в осадок в виде Fе (ОН) 3 .

Как для Fе(II), так и для Fе (III) характерна склонность к образованию гидроксокомплексов типа + , 4+ , + , 3+ , и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил.

Основной формой нахождения Fe (III) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами.

При рН = 8,0 основной формой является Fе(ОН) 3 .Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fе(ОН) 3 и комплексы с органическими веществами.

Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм 3) наблюдаются в подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается окислением Fе (II) в Fе (III) и выпадением последнего в виде Fе(ОН) 3 .

ПДК железа составляет 0,3 мг/дм 3

Кадмий

В природные воды поступает при выщелачивании почв, полиметаллических и медных руд, в результате разложения водных организмов, способных его накапливать.

Соединения кадмия выносятся в поверхностные воды со сточными водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда химических предприятий (производство серной кислоты), гальванического производства, а также с шахтными водами.

Понижение концентрации растворенных соединений кадмия происходит за счет процессов сорбции, выпадения в осадок гидроксида и карбоната кадмия и потребления их водными организмами.

Растворенные формы кадмия в природных водах представляют собой главным образом минеральные и органо-минеральные комплексы. Основной взвешенной формой кадмия являются его сорбированные соединения. Значительная часть кадмия может мигрировать в составе клеток гидробионтов.

В речных незагрязненных и слабозагрязненных водах кадмий содержится в субмикрограммовых концентрациях, в загрязненных и сточных водах концентрация кадмия может достигать десятков микрограммов в 1 дм 3 .

Соединения кадмия играют важную роль в процессе жизнедеятельности животных и человека. В повышенных концентрациях токсичен, особенно в сочетании с другими токсичными веществами.

ПДК составляет 0,001 мг/дм 3 . Лимитирующий признак вредности – токсикологический.

Кобальт

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов.

Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН.

Растворенные формы представлены в основном комплексными соединениями, в том числе с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта.

Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона).

Входя в состав витамина В 12 , кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты, активизирует биосинтез и повышает содержание белкового азота в растениях. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм 3 , среднее содержание в морской воде 0,5 мкг/дм 3 .

ПДК составляет 0,1 мг/дм 3 .

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn (II) до МnО 3 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, – концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах – взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца.

Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами.

Mn (II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко.

Комплексные соединения Mn (II) с органическими веществами обычно менее прочны, чем с другими переходными металлами. К ним относятся соединения с аминами, органическими кислотами, аминокислотами и гумусовыми веществами.

Mn (III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей.

Mn (VI) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм 3 , среднее содержание в морских водах составляет 2 мкг/дм 3 .

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации СО 2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fе (II) в Fе (Ш), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения и распределения марганца в природных водах.

Для водоемов санитарно-бытового использования установлена ПДК по иону марганца, равная 0,1 мг/дм 3 .

Медь

Медь – один из важнейших микроэлементов. Физиологическая активность меди связана главным образом с включением ее в состав активных центров окислительно-восстановительных ферментов. Недостаточное содержание меди в почвах отрицательно влияет на синтез белков, жиров и витаминов и способствует бесплодию растительных организмов.

Медь участвует в процессе фотосинтеза и влияет на усвоение азота растениями. Вместе с тем, избыточные концентрации меди оказывают неблагоприятное воздействие на растительные и животные организмы.

В природных водах наиболее часто встречаются соединения Сu (II).

Из соединений Сu (I) наиболее распространены трудно растворимые в воде Сu 2 О, Сu 2 S, СuСl. При наличии в водной среде лигандов наряду с равновесием диссоциации гидроксида необходимо учитывать образование различных комплексных форм, находящихся в равновесии с акваионами металла.

Основным источником поступления меди в природные воды являются сточные воды предприятий химической, металлургической промышленности, шахтные воды, альдегидные реагенты, используемые для уничтожения водорослей. Медь может появляться в результате коррозии медных трубопроводов и других сооружений, используемых в системах водоснабжения. В подземных водах содержание меди обусловлено взаимодействием воды с горными породами, содержащими ее (халькопирит, халькозин, ковеллин, борнит, малахит, азурит, хризаколла, бротантин).

Предельно допустимая концентрация меди в воде водоемов санитарно-бытового водопользования составляет 0,1 мг/дм 3 (лимитирующий признак вредности – общесанитарный).

Молибден

Соединения молибдена попадают в поверхностные воды в результате выщелачивания их из экзогенных минералов, содержащих молибден. Молибден попадает в водоемы также со сточными водами обогатительных фабрик, предприятий цветной металлургии. Понижение концентраций соединений молибдена происходит в результате выпадения в осадок трудно растворимых соединений, процессов адсорбции минеральными взвесями и потребления растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО 4 -2 .Весьма вероятно существование его в виде органоминеральных комплексов. Возможность некоторого накопления в коллоидном состоянии вытекает из того факта, что продукты окисления молибденита представляют рыхлые тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2,1 до 10,6 мкг/дм 3 . В морской воде содержится в среднем 10 мкг/дм 3 молибдена.

В малых количествах молибден необходим для нормального развития растительных и животных организмов. Молибден входит в состав фермента ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном количестве, что вызывает отрицательные реакции организма. В повышенных концентрациях молибден вреден. При избытке молибдена нарушается обмен веществ.

Предельно допустимая концентрация молибдена в водоемах санитарно-бытового использования составляет 0,25 мг/дм 3 .

Мышьяк

В природные воды мышьяк поступает из минеральных источников, районов мышьяковистого оруднения (мышьяковый колчедан, реальгар, аурипигмент), а также из зон окисления пород полиметаллического, медно-кобальтового и вольфрамового типов. Некоторое количество мышьяка поступает из почв, а также в результате разложения растительных и животных организмов. Потребление мышьяка водными организмами является одной из причин понижения концентрации его в воде, наиболее отчетливо проявляющегося в период интенсивного развития планктона.

Значительные количества мышьяка поступают в водные объекты со сточными водами обогатительных фабрик, отходами производства красителей, кожевенных заводов и предприятий, производящих пестициды, а также с сельскохозяйственных угодий, на которых применяются пестициды.

В природных водах соединения мышьяка находятся в растворенном и взвешенном состоянии, соотношение между которыми определяется химическим составом воды и значениями рН. В растворенной форме мышьяк встречается в трех- и пятивалентной форме, главным образом в виде анионов.

В речных незагрязненных водах мышьяк находится обычно в микрограммовых концентрациях. В минеральных водах его концентрация может достигать нескольких миллиграммов в 1 дм 3 , в морских водах в среднем содержится 3 мкг/дм 3 .

Соединения мышьяка в повышенных концентрациях являются токсичными для организма животных и человека: они тормозят окислительные процессы, угнетают снабжение кислородом органов и тканей.

ПДК мышьяка составляет 0,05 мг/дм 3 (лимитирующий показатель вредности - санитарно-токсикологический)

Никель

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода. Он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде.

Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni 3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni 2+) примерно в 2 раза более токсичны, чем его комплексные соединения.

В речных незагрязненных и слабозагрязненных водах концентрация никеля колеблется обычно от 0,8 до 10 мкг/дм 3 ; в загрязненных она составляет несколько десятков микрограммов в 1 дм 3 . Средняя концентрация никеля в морской воде 2 мкг/дм 3 .

Олово

В природные воды поступает в результате процессов выщелачивания оловосодержащих минералов (касситерит, станнин), а также со сточными водами различных производств (крашение тканей, синтез органических красок, производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограммов в 1 дм 3 . ПДК составляет 2 мг/дм 3 .

Ртуть

В поверхностные воды соединения ртути могут поступать в результате выщелачивания пород в районе ртутных месторождений (киноварь, метациннабарит, ливингстонит), в процессе разложения водных организмов, накапливающих ртуть.

Значительные количества поступают в водные объекты со сточными водами предприятий, производящих красители, пестициды, фармацевтические препараты, некоторые взрывчатые вещества. Тепловые электростанции, работающие на угле, выбрасывают в атмосферу значительные количества соединений ртути, которые в результате мокрых и сухих выпадений попадают в водные объекты.

Понижение концентрации растворенных соединений ртути происходит в результате извлечения их многими морскими и пресноводными организмами, обладающими способностью накапливать ее в концентрациях, во много раз превышающих содержание ее в воде, а также процессов адсорбции взвешенными веществами и донными отложениями.

В поверхностных водах соединения ртути находятся в растворенном и взвешенном состоянии. Соотношение между ними зависит от химического состава воды и значений рН. Взвешенная ртуть представляет собой сорбированные соединения ртути. Растворенными формами являются недиссоциированные молекулы, комплексные органические и минеральные соединения. В воде водных объектов ртуть может находиться в виде метилртутных соединений.

Соединения ртути высоко токсичны, они поражают нервную систему человека, вызывают изменения со стороны слизистой оболочки, нарушение двигательной функции и секреции желудочно-кишечного тракта, изменения в крови и др. Бактериальные процессы метилирования направлены на образование метилртутных соединений, которые во много раз токсичнее минеральных солей ртути. Метилртутные соединения накапливаются в рыбе и могут попадать в организм человека.

ПДК ртути составляет 0,0005 мг/дм 3 (лимитирующий признак вредности санитарно-токсикологический).

Свинец

Естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов.

Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д.

Существенными факторами понижения концентрации свинца в воде является адсорбция его взвешенными веществами и осаждение с ними в донные отложения. В числе других металлов свинец извлекается и накапливается гидробионтами.

Свинец находится в природных водах в растворенном и взвешенном (сорбированном) состоянии. В растворенной форме встречается в виде минеральных и органоминеральных комплексов, а также простых ионов, в нерастворимой – главным образом в виде сульфидов, сульфатов и карбонатов.

В речных водах концентрация свинца колеблется от десятых долей до единиц микрограммов в 1 дм 3 . Даже в воде водных объектов, прилегающих к районам полиметаллических руд, концентрация его редко достигает десятков миллиграммов в 1 дм 3 . Лишь в хлоридных термальных водах концентрация свинца иногда достигает нескольких миллиграммов в 1 дм 3 .

Свинец - промышленный яд, способный при неблагоприятных условиях оказаться причиной отравления. В организм человека проникает главным образом через органы дыхания и пищеварения. Удаляется из организма очень медленно, вследствие чего накапливается в костях, печени и почках.

Лимитирующий показатель вредности свинца – санитарно-токсикологический. ПДК, свинца составляет 0,03 мг/дм 3 .

Тетраэтилсвинец

Поступает в природные воды в связи с использованием в качестве антидетонатора в моторном топливе водных транспортных средств, а также с поверхностным стоком с городских территорий.

Данное вещество характеризуется высокой токсичностью, обладает кумулятивными свойствами.

Серебро

Источниками поступления серебра в поверхностные воды служат подземные воды и сточные воды рудников, обогатительных фабрик, фотопредприятий. Повышенное содержание серебра бывает связано с применением бактерицидных и альгицидных препаратов.

В сточных водах серебро может присутствовать в растворенном и взвешенном виде, большей частью в форме галоидных солей.

В незагрязненных поверхностных водах серебро находится в субмикрограммовых концентрациях. В подземных водах концентрация серебра колеблется от единиц до десятков микрограммов в 1 дм 3 , в морской воде – в среднем 0,3 мкг/дм 3 .

Ионы серебра способны уничтожать бактерии и уже в незначительной концентрации стерилизуют воду (нижний предел бактерицидного действия ионов серебра 210 моль/дм 3). Роль серебра в организме животных и человека изучена недостаточно.

ПДК серебра составляет 0,05 мг/дм 3 .

Сурьма

Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и взвешенном состоянии. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0,5 мкг/дм 3 , в подземных водах – 10,0 мкг/дм 3 .

ПДК сурьмы составляет 0,05 мг/дм 3 (лимитирующий показатель вредности – санитарно-токсикологический ).

Хром

В поверхностные воды соединения трех- и шестивалентного хрома попадают в результате выщелачивания из пород (хромит, крокоит, уваровит и др.). Некоторые количества поступают в процессе разложения организмов и растений, из почв.

Значительные количества могут поступать в водоемы со сточными водами гальванических цехов, красильных цехов текстильных предприятий, кожевенных заводов и предприятий химической промышленности. Понижение концентрации ионов хрома может наблюдаться в результате потребления их водными организмами и процессов адсорбции.

В поверхностных водах соединения хрома находятся в растворенном и взвешенном состояниях, соотношение между которыми зависит от состава вод, температуры, рН раствора. Взвешенные соединения хрома представляют собой в основном сорбированные соединения хрома.

Сорбентами могут быть глины, гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки растительных и животных организмов. В растворенной форме хром может находиться в виде хроматов и бихроматов. При аэробных условиях Cr (VI) переходит в Cr (III), соли которого в нейтральной и щелочной средах гидролизуется с выделением гидроксида.

В речных незагрязненных и слабозагрязненных водах содержание хрома колеблется от нескольких десятых долей микрограмма в литре до нескольких микрограммов в литре, в загрязненных водоемах оно достигает нескольких десятков и сотен микрограммов в литре. Средняя концентрация в морских водах – 0,05 мкг/дм 3 .

Соединения Cr (VI) и Cr (III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr (VI) являются более опасными.

Цинк

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм 3 , в морских – от 1,5 до 10,0 мкг/дм3. Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего, его сульфат и хлорид.

ПДК составляет 1 мг/дм 3 (лимитирующий показатель вредности – органолептический).

Нормирование содержания тяжелых металлов в воде (ПДК)

Предельно допустимая концентрация (ПДК) - утверждённый в законодательном порядке санитарно-гигиенический норматив. Под ПДК понимается такая концентрация химических элементов и их соединений в окружающей среде, которая при повседневном влиянии в течение длительного времени на организм человека не вызывает патологических изменений или заболеваний, устанавливаемых современными методами исследований в любые сроки жизни настоящего и последующего поколений.

Значения ПДК включены в ГОСТы, санитарные нормы и другие нормативные документы, обязательные для исполнения на всей территории государства, их учитывают при проектировании технологических процессов, оборудования, очистных устройств и пр. Санитарно-эпидемиологическая служба в порядке санитарного надзора систематически контролирует соблюдение нормативов ПДК в воде водоёмов хозяйственно-питьевого водопользования, в атмосферном воздухе и в воздухе производственных помещений, контроль за состоянием водоёмов рыбопромыслового назначения осуществляют органы рыбнадзора.

Вода является средой, в которой возникала жизнь и обитает большая часть видов живых организмов (в атмосфере лишь слой около 100 м. наполнен жизнью).

Поэтому при нормировании качества природных вод необходимо заботиться не только о воде как ресурсе, потребляемом человеком, но и о сохранении водных экосистем как важнейших регуляторов условий жизни планеты. Однако действующие нормативы качества природных вод ориентированы главным образом на интересы здоровья человека и рыбного хозяйства и практически не обеспечивают экологическую безопасность водных экосистем.

Требования потребителей к качеству воды зависят от целей использования.

Выделяют три вида водопользования:

  • - Хозяйственно-питьевое - использование водных объектов или их участков в качестве источника хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности;
  • - Культурно-бытовое - использование водных объектов для купания, занятий спортом и отдыха. К этому виду водопользования относятся и участки водных объектов, находящиеся в черте населенных мест;
  • - Водоемы рыбохозяйственного назначения, которые, в свою очередь, делятся на три категории:
  • - высшая категория - места расположения нерестилищ, массового нагула и зимовальных ям особо ценных и ценных видов рыб, других промысловых водных организмов, а также охранные зоны хозяйств для искусственного разведения и выращивания рыб, других водных животных и растений;
  • - первая категория - водные объекты, используемые для сохранения и воспроизводства ценных видов рыб, обладающих высокой чувствительностью к содержанию кислорода;
  • - вторая категория - водные объекты, используемые для других рыбохозяйственных целей.

Конечно, природные воды являются объектами и других видов водопользования - промышленного водоснабжения, орошения, судоходства, гидроэнергетики и т. д.

Использование воды, связано с ее частичным или полным изъятием, называют водопотреблением. Все водопользователи обязаны соблюдать условия, которые обеспечивают качество воды, соответствующее установленным для данного водного объекта нормативам.

Существуют и некоторые общие требования к составу и свойствам воды (табл. 1.1).

Поскольку требования к качеству воды зависят от вида водопользования, необходимо определить этот вид для каждого водного объекта или его участков.

Согласно Правилам виды водопользования устанавливаются региональными органами экологического и санитарного контроля и утверждаются соответствующей исполнительной властью.

Под ПДК природных вод подразумевается концентрация индивидуального вещества в воде, при превышении которой она непригодна для установленного вида водопользования. При концентрации вещества равной или меньше ПДК вода так же безвредна для всего живого, как и вода, в которой полностью отсутствует данное вещество.

Таблица 1.1 - Общие требования к составу и свойствам воды (правила охраны поверхностных вод от загрязнения):

Показатель

Виды водопользования

хозяйственно-питьевое

культурно-бытовое

рыбохозяйственное

Взвешенные вещества

Плавающие примеси

На поверхности водоема не должны обнаруживаться плавающие пленки, пятна минеральных масел и других примесей

Не должна обнаруживаться в столбике

Вода не должна иметь окраски

Запахи, привкусы

Вода не должна приобретать запахов и привкусов более 2 баллов, обнаруживаемых

Вода не должна придавать посторонних привкусов и запахов мясу рыбы

непосредственно или после хлорирования

непосредственно

Температура

Летом, после спуска сточных вод, не должна повышаться более, чем на 3 0 С по сравнению со средней в самый жаркий месяц

Не должна повышаться более, чем на 5 0 С там, где обитают холоднолюбивые рыбы, и не более 8 0 С в остальных случаях

Водородный показатель рН

Не должен выходить за пределы 6,5 - 8,5

Минерализация воды

Не должна превышать по плотному остатку 1000 мг/л, в том числе хлоридов - 350 мг/л, сульфатов - 500 мг/л

Нормируется по показателю «привкусы»

Нормируется согласно таксации рыбохозяйственных водоемов

Растворенный кислород

В любой период года не ниже 4 мг/л в пробе, отобранной до 12 ч. дня

В подледный период не ниже

Полное биохимическое потребление кислорода (БПК полн)

При 20 0 С не должно превышать

Химическое потребление кислорода (ХПК)

Не более 15,0 мг/л

Химические вещества

СанПиН 4630-88

Перечнем ПДК и ОБУВ вредных веществ для воды рыбохозяйственных водоемов

Возбудители заболеваний

Вода не должна содержать возбудителей заболеваний, в том числе жизнеспособные яйца гельминтов и цисты патогенных кишечных простейших

Лактозоположительные кишечные палочки (ЛКП)

Колифаги (в бляшкообразующих единицах)

Не более 100 в 1 л

Сточная вода на выпуске в водный объект не должна оказывать острого токсического действия на тест-объекты

Характер воздействия загрязняющих веществ на человека и водные экосистемы может быть разным.

Многие химические вещества могут тормозить естественные процессы самоочищения, что приводят к ухудшению общего санитарного состояния водоема:

  • - дефициту кислорода;
  • - гниению;
  • - появлению сероводорода;
  • - метана и т. д.

В этом случае устанавливают ПДК по общему санитарному признаку вредности. При нормировании качества воды водоемов ПДК устанавливается по лимитирующему признаку вредности - ЛПВ.

ЛПВ - признак вредного действия вещества, который характеризуется наименьшей пороговой концентрацией.

В табл. 1.2 приведены значения ПДК соединений тяжелых металлов в водоемах хозяйственно-питьевого водопользования.

Таблица 1.2 - Предельно допустимые концентрации вредных веществ в воде водоемов хозяйственно-питьевого водопользования:

Соединение

Молекулярная масса

Концентрация, мг/л

Железа соединения в пересчете на Fe

Кадмий хлористый в пересчете на Cd

Кобальт хлористый в пересчете на Co

Марганца соединения в пересчете на Mn

Медь сернокислая в пересчете на Cu

Мышьяк окись в пересчете на As

Никель сернокислый в пересчете на Ni

  • 216,6
  • 200,6
  • 232,7
  • 0,005
  • 0,005
  • 0,005
  • 0,005
  • 0,005
  • 0,005

Свинец азотнокислый в пересчете на Pb

Свинца соединение в пересчете на Pb

Хрома (III) соединения в пересчете на Cr

Хрома (VI) соединения в пересчете на Cr

Цинка соединение в пересчете на Zn

Примечание:

При установлении ПДК вредных веществ в воде водоемов ориентируются на минимальную концентрацию веществ по одному из следующих показателей:

  • - ППКт - подпороговая концентрация вещества в водоеме, определяемая по токсилогическим характеристикам, мг/л.;
  • - ППКорл - подпороговая концентрация веществ в водоеме, определяемая по изменению органолептических характеристик(запах, цвет, привкус), мг/л.;
  • - ППКс.р.в. - подпороговая концентрация вещества, определяемая по влиянию на санитарный режим водоема (сапрофитная микрофлора, биологическая потребность в кислороде и др.), мг/л.;
  • - ПДКв - предельно допустимая концентрация вещества в воде водоема, мг/л.

Противоречие и отличие установления ПДК для водоемов различного назначения. Перечни ПДК для водоемов различного применения разрабатывают определенные ведомства рыбохозяйственного и санитарно-гигиенического профиля, как правило, не согласовывая свои действия. В результате получается следующее: одно и то же вещество называется по-разному в различных перечнях, на некоторые вещества существуют ПДК только для одних водоемов, а для других - отсутствуют.

Например, для хлорорганических соединений ПДК существуют только санитарно-гигиенические требования и отсутствуют для рыбохозяйственных водоемов. Как известно, санитарно-гигиенические ПДК более завышены по сравнению с рыбохозяйственными, ибо устанавливаются по результатам биотестирования на теплокровных животных, а не на гидробионтах-рыбах. Это приводит к путанице и отсутствию информации в Государственном реестре веществ.

Отсутствие информации, например, о ПДК хлорорганических соединений, с одной стороны, вызывает сомнения о безопасности сброса в водоемы рыбохозяйственного назначения (а к водоемам рыбохозяйственного назначения можно отнести практически любой водоем, так как рыба водится, кроме болот, везде), с другой стороны, позволяет надзорным органам, ссылаясь на норматив, запретить сброс хлорорганических веществ, или в лучшем случае - «атоматом» применить к водопользователю повышающий коэффициент 25.

НДС устанавливают требования к сбросным СВ более жесткие, чем ПДК для рыбохозяйственных водоемов, или на уровне ПДК, а в свою очередь, требования СанПиН к качеству питьевой воды более «мягкие», чем ПДК (табл. 1.3).

Таблица 1.3 - ПДК тяжелых металлов в воде рыбохозяйственных водоемов и в питьевой воде:

Элементарный здравый смысл подсказывает, что нормативные требования НДС к сточным водам и питьевой воде должны поменяться местами.

В большинстве европейских стран при установлении нормативов на качество очистки сточных вод основным условием является достижение максимально возможной степени очистки с учетом использования наилучших современных технологий.

Некоторые знакомые химфизики при упоминания кадмия сразу закатывают глаза - мол, страшная дрянь, непередаваемая.

Интересно разобраться.

Физиологическое действие

Соединения кадмия ядовиты. Особенно опасным случаем является вдыхание паров его оксида (CdO). Вдыхание в течение 1 минуты воздуха с содержанием 2,5 г/м3 окиси кадмия, или 30 секунд при концентрации 5 г/м3 является смертельным. Кадмий является канцерогеном .

В качестве первой помощи при остром кадмиевом отравлении рекомендуется свежий воздух, полный покой, предотвращение охлаждения. При раздражении дыхательных путей - тёплое молоко с содой, ингаляции 2 %-ным раствором NaHCO3. При упорном кашле - кодеин, дионин, горчичники на грудную клетку, необходима врачебная помощь. Противоядием при отравлении, вызванном приёмом внутрь кадмиевых солей, служит альбумин с карбонатом натрия.

Острая токсичность

Пары кадмия, все его соединения токсичны, что связано, в частности, с его способностью связывать серосодержащие ферменты и аминокислоты.

Симптомы острого отравления солями кадмия - рвота и судороги.

Хроническая токсичность

Кадмий - кумулятивный яд (способен накапливаться в организме).

Санитарно-экологические нормативы

В питьевой воде ПДК для кадмия 0,001 мг/дм³ (СанПиН 2.1.4.1074-01).

Вот кто бы сказал: это для кадмия в любом виде, в любых соединениях?

Механизм токсического действия

Механизм токсического действия кадмия заключается, по-видимому, в связывании карбоксильных, аминных и особенно сульфгидрильных групп белковых молекул, в результате чего угнетается активность ферментных систем. Растворимые соединения кадмия после всасывания в кровь поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей.

Кадмий в норме в небольших количествах присутствуют в организме здорового человека. Кадмий легко накапливается в быстроразмножающихся клетках (например в опухолевых или половых). Он связывается с цитоплазматическим и ядерным материалом клеток и повреждает их. Он изменяет активность многих гормонов и ферментов. Это обусловлено его способностью связывать сульфгидрильные (-SH) группы.

И тут тоже вопрос: в норме в каких именно количествах содержится в организме, и в каком виде?

40 % производимого кадмия используется для нанесения антикоррозионных покрытий на металлы.

Около 20 % кадмия идет на изготовление кадмиевых электродов, применяемых в аккумуляторах (никель-кадмиевых и серебряно-кадмиевых), нормальных элементах Вестона, в резервных батареях (свинцово-кадмиевый элемент, ртутно-кадмиевый элемент) и др.

Около 20 % кадмия используется для производства неорганических красящих веществ (сульфиды и селениды, смешанные соли, например, сульфид кадмия - кадмий лимонный).

  • Иногда кадмий применяется в экспериментальной медицине.[источник не указан 226 дней]
  • Кадмий используется в гомеопатической медицине.
  • В последние годы кадмий стал применяться при создании новых противоопухолевых нано-медикаментов.[источник не указан 226 дней] В СССР в начале 1950-х годов были проведены первые успешные эксперименты, связанные с разработкой противоопухолевых медикаментов на основе соединений кадмия.
  • ...

    Используют кадмий для получения пигментов (~ 20%) и спец. припоев, полупроводниковых материалов, стабилизаторов (~ 10%) пластмасс (напр., поливинилхлорида) , как компонент антифрикционных, легкоплавких и ювелирных сплавов, для изготовления регулирующих и аварийных стержней ядерных реакторов.

    Пары кадмия и его соед. токсичны, причем кадмий может накапливаться в организме. Симптомы острого отравления солями кадмия рвота и судороги. Растворимые соед. кадмия после всасывания в кровь поражают центр. нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хронич. отравление приводит к анемии и разрушению костей. ПДК (рекомендованная) в сточных водах для солей 0,1 мг/л, в питьевой воде 0,01 мг/л.

    Тут ПДК (это по идее еше советские нормативы) даже для питьевой воды на порядок мягче - если не опечатка.

    Кадмий попадает в организм человека через дыхательный аппарат, или через аппарат пищеварения. Он принадлежит к элементам, для которых корневая система растений не представляет никакой преграды. Кроме того, некоторые растения, например, табак, аккумулируют его в листьях. Лица курящих или находятся с теми, кто курит, в одном помещении, испытывают негативное влияние аэрозоля, который месит кадмий в количестве 0,1 ÷ 0,2 мг на каждую выжженную сигарету. Ресорбция кадмия и его соединений из дыхательного аппарата достаточно высока и достигает даже 40%. Значительно меньше количества кадмия попадают через систему пищеварения - около 6%. Ресорбция может понести повышение при низком содержании в рационе соединений кальция и железа. Кадмий нарушает метаболизм белка, ограничивает усвоение железа, увеличивает удаления кальция. Вышеупомянутый влияние обусловлено способностью кадмия к вытеснению цинка и меди из соединений с металотионеином - белком, содержащим ЗО% цистеина, с группами -SH которого кадмий образует очень устойчивые соединения. Легкость замещения цинка следует из большей продолжительности гидрат-иона 2+ по сравнению с 2+. Эта разница прочности гидрат-ионов, а также сильное сходство с серы вызывает тот факт, что кадмий сочетается с группами -SH энзимов сильнее, чем цинк. В результате металотионеин может содержать даже 11% весовых кадмия. Кадмий в организме человека подвергается биоаккумуляции с периодом полураспада, который длится 20-30 лет (по другим данным - 40 лет). Отсюда следует также ограничения содержания кадмия в рационе - согласно ВОЗ этот содержание не должно превышать 0,4 ÷ 0,5 мг. Норма ВОЗ приближена к содержимому этого элемента в нормальном рационе (0,2 ÷ 0,4 мг / неделю).

    Специфической чертой токсикологии кадмия является запоздалым проявление симптомов отравления, касается как отравление острого, так и хронического. Проявления острого отравления путем ингаляции дымов кадмия (короткое дыхание, слабость, лихорадка и даже недостаточность дыхания) появляются даже через 24 часа после контакта с токсином, очень затрудняет диагностику. Ингаляция соединений кадмия с концентрацией 5 мг / м3 в течение 8:00 может стать причиной смерти. Отравления, вызванные дымом кадмия проявляются эмфизема легких и повреждениями почек (белковая мочевина).

    Подробное исследование симптомов хронического отравления соединениями кадмия, попадают в рацион, было обусловлено экологической катастрофой в Японии, ее вызвало потребления риса, который был поражен кадмием. Известная в литературе болезнь itai-itai, кроме поражения почек проявляется в размягчении костей (остеомаляция) и в росте их ломкости (остеопороз). У больных людей наблюдается нарушение метаболизма кальция, фосфора, витамина D, а также сахарная мочевина.

    Эпидемиологические исследования рабочих, работающих в производстве по переработке кадмия, проявляли увеличен проявление заболеваний раком, в частности раком простаты.

    Допустимые концентрации кадмия

    Таблица 2.18

    ПДК для кадмия , действующих на территории СНГ по С.С. Юфита

    1

    В работе отражены результаты мониторинга проб приземного слоя атмосферного воздуха на предмет содержания в нем тяжелых металлов в условиях урбанизированной среды Поволжья. Основными источниками техногенных тяжелых металлов в районе исследований являются промышленные предприятия и автотранспорт. Лабораторные элементные анализы проб производились методом пламенной атомно-абсорбционной спектрометрии. В результате проведения мониторинга выявлено превышение ПДК по ряду элементов: в г. Саратове – по свинцу, цинку, марганцу, меди; в г. Сердобске – по свинцу и кобальту; в г. Кузнецке – по свинцу, цинку и кобальту; в г. Камышине – по свинцу и цинку; в г. Волжском – по свинцу, кадмию и меди; в г. Инзе – по цинку; в г. Димитровграде – по ванадию, свинцу, цинку, меди. Требуются мероприятия по оздоровлению окружающей среды и, в частности, атмосферного воздуха.

    атмосферный воздух

    тяжелые металлы

    техногенное загрязнение

    1. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2009 году». - М.: АНО «Центр международных проектов», 2010. - 523 с.

    2. ГОСТ 17.2.3.01-86. Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов. - М.: Изд-во стандартов, 1987. - 5 с.

    3. Другов Ю. С., Беликов А. Б., Дьякова Г. А., Тульчинский В. М. Методы анализа загрязнений воздуха. - М.: Химия, 1984. - 384 с.

    4. Израэль Ю. А. Экология и контроль состояния природной среды. - М.: Гидрометеоиздат, 1984. - 560 с.

    5. Израэль Ю. А. Экология и контроль состояния природной среды. - Л.: Гидрометеоиздат, 1989. - 375 с.

    6. РД 52.04.186-89. Руководство по контролю загрязнения атмосферы. - М.: Изд-во Госкомгидромета, 1991. - 237 с.

    7. Экологический мониторинг: метод. пособие / В. В. Снакин, М. А. Малярова, Т. Ф. Гурова и др. - М.: РЭФИА, 1996. - 92 с.

    Введение

    В последние десятилетия экологическая обстановка в регионах Поволжья значительно ухудшилась. В настоящее время в Саратовской, Пензенской, Волгоградской и Ульяновской областях состояние окружающей среды в пределах городов, где проживает более половины населения, характеризуется как кризисное и требующее действенных мер по оздоровлению. Особо выделяется в поволжских городах экологическая проблема загрязнения техногенными тяжелыми металлами атмосферного воздуха .

    На территории практически любого города распределение поллютантов, антропогенно выделяющихся в атмосферу, имеет свою специфику. Поллютанты, которые вместе с выбросами поступают в атмосферу на большой высоте над земной поверхностью (например, из высоких труб производственных объектов), распространяются на огромные расстояния воздушными массами. Эти выбросы в основном загрязняют территории, значительно удаленные от города.

    Тяжелые металлы, как известно, содержатся в приземном слое атмосферного воздуха: в 1,5-3,5 м над земной поверхностью. Они способны мигрировать и аккумулироваться в депонирующих средах: в почве, водной среде, в биомассе живых организмов.

    Тяжелые металлы в составе техногенных выбросов промышленных предприятий и автотранспорта составляют основную массу твердой фазы и находятся преимущественно в форме оксидов, сульфидов, карбонатов, гидратов и микроскопических капель (шариков) металлов. Удельная масса этих соединений (г/см 3) достаточно высокая: оксидов 5-6, сульфидов 4-4,5, карбонатов 3-4, металлов 7-8 .

    Цель исследований , проведенных в 2009-2011 гг., состояла в анализе среднегодового содержания тяжелых металлов в городах Поволжья - Балашове, Саратове (Саратовская область), Сердобске, Кузнецке (Пензенская область), Камышине, Волжском (Волгоградская область), Инзе, Димитровграде (Ульяновская область) - с разной степенью техногенного прессинга на окружающую среду.

    Материалы и методы исследования

    Отбор проб воздуха на высоте 2-2,5 м от земли осуществлялся электроаспиратором ПУ-2Э на передвижных постах (автомобиль с инструментарием) . В большинстве городов было заложено по 5 постов, за исключением крупных городов - Саратова и Волжского, в которых располагалось по 10 постов. На участках природных степных разнотравных экосистем (контроль) - в окрестностях с. Березовка и с. Пады Балашовского района Саратовской области - мониторинг проводился на 2 постах. Пробоотбор осуществлялся дискретно на передвижных постах утром (8.00 ч) и вечером (20.00 ч) в течение 3 дней в августе 2009-2011 гг.

    Лабораторный анализ проб воздухана предмет содержания в твердой фазе тяжелых металлов выполнен методом пламенной атомно-абсорбционной спектрометрии .

    Результаты исследования и их обсуждение

    Результаты мониторинга атмосферного воздуха в эталонной экосистеме (в контроле) представлены в табл. 1. Здесь ежегодно постоянно идентифицировались четыре техногенных тяжелых металла - Pb, Zn, Mn, Cu, аэротехногенными источниками которых были: движущийся по проселочным дорогам автотранспорт и деятельность сельскохозяйственных предприятий животноводческой и растениеводческой отраслей.

    Таблица 1 Содержание техногенных тяжелых металлов в атмосферном воздухе в контроле (2009-2011 гг.)

    В контроле концентрации данных элементов в атмосферном воздухе предельно-допустимых значений не превышали.

    В составе атмосферного воздуха г. Балашова (Саратовская область) ежегодно индентифицировались следующие поллютанты: Pb, Zn, Mn, Cu, Fe, Co, Cd. Из них пять (Pb, Zn, Mn, Cu, Fe) оказывали наиболее значимое влияние на качество воздуха (табл. 2). Эти поллютанты содержались в воздухе в количествах (мг/м 3), превышающих фоновые показатели, но не превышающих соответствующие им гигиенические нормативы (ПДК). Средние арифметические значения концентраций Pb, Zn, Mn и Cu в атмосферном воздухе г. Балашова оказались равными ПДК, что свидетельствует о начинающимся процессе ухудшения качества воздуха и деградации окружающей среды.

    Таблица 2г. Балашова (2009-2011 гг.)

    В атмосферном воздухе г. Саратова выявлено десять тяжелых металлов (Pb, Zn, Mn, Cu, Co, Cd, Fe, Mo, Ni, Hg), из них наиболее значимые следующие шесть элементов: Pb, Zn, Mn, Cu, Co, Cd. Первые четыре металла содержались в приземной атмосфере в количествах, превышающих ПДК в 9,0, 6,2, 3,7 и 2,9 раз соответственно. Данные величины свидетельствуют о весьма нестабильном экологическом состоянии атмосферного воздуха в пределах г. Саратова, что требует срочной реализации неотложных природоохранных мер (табл. 3).

    Таблица 3 Содержание техногенных тяжелых металлов в атмосферном воздухе г. Саратова (2009-2011 гг.)

    В г. Сердобске (Пензенская область) зарегистрированы следующие тяжелые металлы - загрязнители приземной атмосферы: V, Pb, Zn, Co, Cu, Cd, Ni, Mo, но наиболее существенное влияние оказывают первые шесть элементов. Из всех поллютантов лишь Pb (1 ПДК) и Co (1,3 ПДК) содержались в воздухе в больших объемах, что характеризует состояние воздуха как экологически нестабильное (табл. 4). При увеличении объемов неочищенных или недостаточно очищенных аэротехногенных выбросов в ближайшие годы уровень загрязнения воздушного бассейна в пределах г. Сердобска будет оцениваться как высокий.

    Таблица 4Содержание техногенных тяжелых металлов в атмосферном воздухе г. Сердобска (2009-2011 гг.)

    В пределах г. Кузнецка (Пензенская область) в связи с высокой загрязненностью воздушного бассейна сложилась напряженная экологическая ситуация. В химическом составе атмосферного воздуха выявлено восемь наименований техногенных тяжелых металлов: Fe, Pb, Zn, Co, Cr, Ni, из которых шесть содержались в воздухе практически постоянно. Концентрации Pb, Zn, Co значительно превышали ПДК в 2,2, 1,2 и 1,5 раз соответственно, что говорит о высоком уровне загрязнения воздуха (табл. 5).

    Таблица 5 Содержание техногенных тяжелых металлов в атмосферном воздухе г. Кузнецка (2009-2011 гг.)

    Состав атмосферного воздуха г. Камышина (Волгоградская область) включает следующие поллютанты: Pb, Zn, Cd, Cu, Sb, V, Cd. Периодически выявляется присутствие в воздухе первых пяти элементов из этого перечня. Концентрации остальных металлов составляют либо следовые значения, либо отсутствуют продолжительное время. По Pb и Zn, входящим в состав выхлопных газов автомобилей и выбросов все еще функционирующих промышленных предприятий, ежегодно регистрировались повышенные концентрации, превышающие ПДК в 1,4 и 1,3 раза соответственно для каждого из этих загрязнителей (табл. 6). В соответствии с этим экологическое состояние воздушного бассейна в пределах г. Камышина оценивается как нестабильное.

    Таблица 6Содержание техногенных тяжелых металлов в атмосферном воздухе г. Камышина (2009-2011 гг.)

    Основными ингредиентами атмосферного воздуха в границах г. Волжского (Волгоградская область) являются следующие тяжелые металлы: Pb, Zn, Cd, Cu, Ni, Cd, Co, Hg, Cr. Первые четыре элемента являются приоритетными поллютантами, загрязняющими объекты окружающей среды. Экологическая обстановка на территории города оценивается как напряженная, связанная с большими объемами промышленных выбросов и значительно возросших количеств автомобильных выхлопов, содержащих Pb, Cd, и Cu в достаточно высоких концентрациях: 5,4, 2,3 и 2,5 долей ПДК по данным экотоксикантам (табл. 7). Требуются срочные природоохранные мероприятия.

    Таблица 7Содержание техногенных тяжелых металлов в атмосферном воздухе г. Волжского (2009-2011 гг.)

    Состояние атмосферного воздуха г. Инзы (Ульяновская область) оценивается как повышено загрязненное, поскольку в его составе периодически регистрируются тяжелые металлы: V, Pb, Zn, Cr, Cd, Ni, Mo. Ежегодно отмечаются высокие концентрации у Pb, Zn и Cr в приземном слое воздуха, причем Zn в среднем содержится в количестве, в 1,2 раза превышающим ПДК (табл. 8). Состояние воздуха оценивается как повышенно загрязненное. Экологическая проблема атмосферного воздуха связана с ежегодно возрастающими концентрациями тяжелых металлов, приближающихся к ПДК и превышающих ее.

    Таблица 8Содержание техногенных тяжелых металлов в атмосферном воздухе г. Инзы (2009-2011 гг.)

    В составе приземного слоя атмосферного воздуха в пределах г. Димитровграда установлено содержание порядка восьми техногенных элементов: V, Pb, Zn, Cu, Cr, Ni, Cd, Hg. Максимальное токсическое действие на окружающую среду оказывают четыре тяжелых металла: V, Pb, Zn и Cu. Их средневзвешенное содержание превышает ПДК в 1,5, 2,0, 1,8 и 2,5 раза соответственно для каждого из этих поллютантов (табл. 9). Состояние воздушного бассейна в пределах г. Димитровграда характеризуется как кризисное, напряженное и требует мер по его улучшению.

    Таблица 9Содержание техногенных тяжелых металлов в атмосферном воздухе г. Димитровграда (2009-2011 гг.)

    Выводы

    Максимально загрязнен атмосферный воздух в городах с мощным техногенным воздействием на окружающую среду промышленностью и автотранспортом: в Саратове (уровень загрязнения воздуха - «очень высокий»), Кузнецке (уровень загрязнения воздуха - «высокий»), Волжском («высокий» уровень загрязнения воздуха), Димитровграде («высокий» уровень загрязнения воздуха).

    Рецензенты:

    • Любимов Валерий Борисович, д.б.н., профессор, зав. кафедрой экологии и рационального природопользования ФГБОУ ВПО «Брянский государственный университет имени академика И. Г. Петровского», г. Брянск.
    • Зайцева Елена Владимировна, д.б.н., профессор, зав. кафедрой зоологии и анатомии ФГБОУ ВПО «Брянский государственный университет имени академика И. Г. Петровского», г. Брянск.

    Библиографическая ссылка

    Ларионов М.В., Ларионов Н.В. СОДЕРЖАНИЕ ТЕХНОГЕННЫХ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРИЗЕМНОМ СЛОЕ ВОЗДУХА УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ ПОВОЛЖЬЯ // Современные проблемы науки и образования. – 2012. – № 2.;
    URL: http://science-education.ru/ru/article/view?id=6063 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»