Энтропия как функция температуры давления объема. Изменение энтропии

2.Стандартная энтропия веществ. Изменение энтропии при изменении агрегатного состояния веществ. Расчет изменения стандартной энтропии в химической реакции.
Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики). Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Энтропия связана с термодинамической вероятностью соотношением: S = R · ln W
Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль–1∙K–1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔSпл = ΔHпл/Tпл. Для химической реакции изменение энтропии аналогично изменению энтальпии ​

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q / T (приведенное тепло).

Здесь ΔS° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной.

Энтропия зависит от:
-агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
-изотопного состава (H2O и D2O).
-молекулярной массы однотипных соединений (CH4, C2H6, н-C4H10).
-строения молекулы (н-C4H10, изо-C4H10).
-кристаллической структуры (аллотропии) – алмаз, графит.

Изменение энтропии в процессе этого (твердое тело-жидкость) фазового перехода можно найти просто, если считать процесс равновесным.

Это вполне допустимое приближение, если считать, что разность температур между системой и тем объектом, который поставляет системе тепло, не слишком велика, намного меньше температуры плавления. Тогда можно использовать термодинамический смысл энтропии: с точки зрения термодинамики энтропия – это такая функция состояния системы, изменение которой dS в элементарном равновесном процессе равно отношению порции тепла δQ, которое система получает в этом процессе, к температуре системы Т:

Так как температура системы в данном фазовом переходе не меняется и равна температуре плавления, то подынтегральное выражение –это величина, которая в ходе процесса не меняется, поэтому она от массы m вещества не зависит. Тогда

Из этой формулы следует, что при плавлении энтропия возрастает, а при кристаллизации уменьшается. Физический смысл этого результата достаточно ясен: фазовая область молекулы в твердом теле гораздо меньше, чем в жидкости, так как в твердом теле каждой молекуле доступна только малая область пространства между соседними узлами кристаллической решетки, а в жидкости молекулы занимают всю область пространства. Поэтому при равной температуре энтропия твердого тела меньше энтропии жидкости. Это означает, что твердое тело представляет собой более упорядоченную, и менее хаотичную систему, чем жидкость.
Применение энтропии в этом (жидкость-газ) процессе можно найти просто, считая процесс равновесным. И опять это вполне допустимое приближение, при условии, что разность температур между системой и «поставщиком» тепла невелика, т.е. намного меньше температуры кипения. Тогда

Из формулы следует, что при испарении энтропия возрастает, а при конденсации уменьшается.
Физический смысл этого результата состоит в различии фазовой области молекулы в жидкости и газе. Хотя в жидкости и газе каждой молекуле доступна вся область пространства, занятая системой, но сама эта область для жидкости существенно меньше, чем для газа. В жидкости силы притяжения между молекулами удерживают их на определенном расстоянии друг от друга. Поэтому каждая молекула хотя и имеет возможность свободно мигрировать по области пространства, занятой жидкостью, но не имеет возможности «оторваться от коллектива» остальных молекул: стоит ей оторваться от одной молекулы, как тут же притягивается другая. Поэтому объем жидкости зависит от её количества и никак не связан с объемом сосуда.

Молекулы газа ведут себя иначе. У них гораздо больше свободы, среднее расстояние между ними таково, что силы притяжения очень малы, и молекулы «замечают друг друга» лишь при столкновениях. В результате газ всегда занимает весь объем сосуда.

Поэтому при равных температурах фазовая область молекул газа значительно больше фазовой области молекул жидкости, и энтропия газа больше энтропии жидкости. Газ, по сравнению с жидкостью, гораздо менее упорядоченная, более хаотичная система.

Изменение стандартной молярной энтропии в химической реакции определяется уравнением:

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов-только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С.

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния - энтропия S , которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2 S < 0).

Неравенство (4.1) называют неравенством Клаузиуса . Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с помощью двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

где k = 1.38 10 -23 Дж/К - постоянная Больцмана (k = R / N A), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана .

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

где G (E ) - фазовый объем, занятый микроканоническим ансамблем с энергией E .

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Q обр = TdS , (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении .

Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Q обр = C p dT .

(4.9)

Если теплоемкость не зависит от температуры в интервале от T 1 до T 2 , то уравнение (4.8) можно проинтегрировать:

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) C p надо заменить на C V .

2) Изотермическое расширение или сжатие .

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

(4.11)

В частности, для изотермического расширения идеального газа (p = nRT / V )

Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Q обр = nRT ln(V 2 /V 1) .

3) Фазовые переходы .

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

(4.13)

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п. , поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

4) Смешение идеальных газов при постоянных температуре и давлении .

Если n 1 молей одного газа, занимающего объем V 1 , смешиваются с n 2 молями другого газа, занимающего объем V 2 , то общий объем будет равен V 1 + V 2 , причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

где x i - мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln x i < 0, поэтому идеальные газы всегда смешиваются необратимо.

Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .

Абсолютная энтропия

В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики) :

При абсолютном нуле T = 0 К все идеальные кристаллы
имеют одинаковую энтропию, равную нулю.

При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

(x = p , V ). (4.15)

Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста .

Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости C p от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

. (4.17)

ПРИМЕРЫ

Пример 4-1. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

Решение .

Интегрируя это равенство, находим зависимость энтропии от объема:

где const зависит от температуры.

Пример 4-2. Рассчитайте изменение энтропии при нагревании 0.7 моль моноклинной серы от 25 до 200 о С при давлении 1 атм. Мольная теплоемкость серы равна:

C p (S тв) = 23.64 Дж/(моль. К),
C p (S ж) = 35.73 + 1.17 . 10 -3 . T Дж/(моль. К).

Температура плавления моноклинной серы 119 о С, удельная теплота плавления 45.2 Дж/г.

Решение . Общее изменение энтропии складывается из трех составляющих: 1) нагревание твердой серы от 25 до 119 о С, 2) плавление, 3) нагревание жидкой серы от 119 до 200 о С.

4.54 Дж/К.

2.58 Дж/К.

S = S 1 + S 2 + S 3 = 11.88 Дж/К.

Ответ. 11.88 Дж/К.

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V 1 до объема V p .

Решение . а) Изменение энтропии газа при обратимом изотермическом расширении можно найти с помощью термодинамического определения энтропии с расчетом теплоты расширения по первому закону:

.

Так как расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

.

б) Энтропия - функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс - обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Другое дело - энтропия окружающей среды, которую можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

.

В этом выводе мы использовали тот факт, что U = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления равна: A = p (V 2 -V 1), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

Общее изменение энтропии газа и окружающей среды больше 0:

,

как и полагается для необратимого процесса.

Пример 4-4. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5 О С. Теплота плавления льда при 0 о С равна 6008 Дж/моль. Теплоемкости льда и воды равны 34.7 и 75.3 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

Решение . Необратимый процесс замерзания воды при температуре -5 О С можно представить в виде последовательности обратимых процессов: 1) нагревание воды от
-5 О С до температуры замерзания (0 О С); 2) замерзание воды при 0 О С; 3) охлаждение льда от 0 до -5 О С:

Изменение энтропии в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (4.9):

77.3 Дж/К.

-35.6 Дж/К.

Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода (4.13). Необходимо только иметь в виду, что теплота при замерзании выделяется:

-1223 Дж/К.

Т.к. энтропия - функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

S = S 1 + S 2 + S 3 = -1181 Дж/К.

Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем это увеличение больше, чем 1181 Дж/К, поэтому энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

Ответ. -1181 Дж/К.

ЗАДАЧИ

4-1. Приведите пример термодинамического процесса, который может быть проведен как обратимо, так и необратимо. Рассчитайте изменение энтропии системы и окружающей среды в обоих случаях.

4-2. Проверьте неравенство Клаузиуса для циклического процесса, представленного в задаче 2.14.

4-3. Рассчитайте мольную энтропию неона при 500 К, если при 298 К и том же объеме энтропия неона равна 146.2 Дж/(моль. К).

4-4. Рассчитайте изменение энтропии при нагревании 11.2 л азота от 0 до 50 о С и одновременном уменьшении давления от 1 атм до 0.01 атм.

4-5. Один моль гелия при 100 о С и 1 атм смешивают с 0.5 моль неона при 0 о С и 1 атм. Определите изменение энтропии, если конечное давление равно 1 атм.

4-6. Рассчитайте изменение энтропии при образовании 1 м 3 воздуха из азота и кислорода (20 об.%) при температуре 25 о С и давлении 1 атм.

4-7. Три моля идеального одноатомного газа (C V = 3.0 кал/(моль. К)), находящегося при T 1 = 350 K и P 1 = 5.0 атм, обратимо и адиабатически расширяются до давления P 2 = 1.0 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии, энтальпии и энтропии в этом процессе.

4-8. Рассчитайте изменение энтропии при нагревании 0.4 моль хлорида натрия от 20 до 850 о С. Мольная теплоемкость хлорида натрия равна:

C p (NaCl тв) = 45.94 + 16.32 . 10 -3 . T Дж/(моль. К),
C p (NaCl ж) = 66.53 Дж/(моль. К).

Температура плавления хлорида натрия 800 о С, теплота плавления 31.0 кДж/моль.

4-9. Рассчитайте изменение энтропии при смешении 5 кг воды при 80 о С с 10 кг воды при 20 о С. Удельную теплоемкость воды принять равной: C p (H 2 O) = 4.184 Дж/(г. К).

4-10. Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 о С, к 200 г воды (90 о С) в изолированном сосуде. Теплота плавления льда равна 6.0 кДж/моль.

4-11. Для некоторого твердого тела найдена зависимость коэффициента расширения от давления в интервале давлений от p 1 до p 2:

.

Насколько уменьшится энтропия этого тела при сжатии от p 1 до p 2 ?

4-12. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления p 1 до давления p 2: а) обратимо; б) против внешнего давления p < p 2 .

4-13. Запишите выражение для расчета абсолютной энтропии одного моля воды при температуре 300 0 С и давлении 2 атм.

4-14. Нарисуйте график зависимости стандартной энтропии воды от температуры в интервале от 0 до 400 К.

4-15. Запишите энтропию одного моля идеального газа как функцию температуры и давления (теплоемкость считать постоянной).

4-16. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-17. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-18. Один моль газа описывается уравнением состояния

где f (V ) - некоторая функция, которая не зависит от температуры. Рассчитайте изменение энтропии газа при его необратимом изотермическом расширении от объема V 1 до объема V 2 .

4-19. Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 О С. Теплота плавления твердого метанола при -98 о С (т.пл.) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55.6 и 81.6 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

4-20. Теплоемкость некоторого вещества в интервале температур от T 1 до T 2 изменяется следующим образом:

Постройте график зависимости энтропии вещества от температуры в этом интервале температур.

4-21. Пользуясь справочными данными, приведите пример самопроизвольной химической реакции, для которой стандартное изменение энтропии меньше 0.

4-22. Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции H 2(г) + ЅO 2(г) = H 2 O (г) а) при 25 о С; б) при 300 о С.

Понятие энтропии используется в различных науках: физике, химии, математике, биологии, социологии. Само слово произошло от греческого и обозначает «превращение, изменение». Что это такое простыми словами? Можно сказать, что это мера беспорядка, хаотичности в любой системе. Чем меньше порядка, тем больше ее значение. Если книги стоят на полке, неупорядоченность у них меньше, чем если они лежат кучей.

Определение данного термина зависит от сферы его применения. В общих словах можно сказать, что это мера беспорядка и необратимого рассеяния энергии. Чем более упорядочена какая-то система, тем энергия более сконцентрирована. Например, если мы поместим горячий предмет в холодную воду, постепенно он остынет, а вода нагреется. Во втором случае энтропия больше.

Важно! Энтропия характеризует беспорядок. Чем она больше, тем меньше система упорядочена.

В качестве системы может выступать что угодно. В физике или химии это обычно газ, жидкость, твердое тело, набор определенного числа частиц. В информатике это может быть текст, в социологии группа людей.

Термин энтропия

В физике

Этот термин используется в таких разделах физики, как термодинамика и статистическая физика. Термодинамика изучает способы передачи и превращения энергии. Она имеет дело с процессами, в которых можно использовать понятие температуры. Именно в термодинамике впервые начали использовать это понятие. Ввел его немецкий ученый Рудольф Клаузиус. Статистическая механика изучает поведение систем из конечного количества частиц, используя для этого методы теории вероятности.

В разных разделах физики этот термин означает несколько разные вещи. В термодинамике это характеристика необратимого рассеяния энергии. В статистической физике эта величина показывает вероятность какого-то состояния.

В термодинамике

Энтропия - единственная величина, показывающая направление физических процессов. Что это значит?

  • В изолированной системе, то есть той, которая не обменивается ни веществом, ни энергией с окружающими предметами, процессы всегда идут так, что неупорядоченность увеличивается. Достигнув максимума, она остается постоянной. В этом суть второго начала термодинамики.
  • Обратимые процессы не меняют неупорядоченность.
  • Необратимые процессы всегда идут так, что беспорядок увеличивается.
    В открытой системе эта величина может возрастать или оставаться постоянной, возможны и такие процессы, при которых беспорядок уменьшается. То есть вмешательством извне мы можем уменьшить неупорядоченность.

Всякая система, находящаяся в неизменных внешних условиях, со временем приходит в состояние равновесия и не может самостоятельно из него выйти. При этом все ее части будут иметь одинаковую температуру. Это нулевое начало термодинамики.

В равновесии беспорядок больше всего. Например, есть сосуд, разделенный перегородкой. С одной стороны находится один газ, с другой - другой. Если убрать перегородку, постепенно газы смешаются и самостоятельно уже не разделятся снова. Такое состояние будет более беспорядочным, чем состояние, когда газы были разделены.

В физике эта величина - функция состояния системы. Это значит, что она зависит от параметров системы:

  • температуры;
  • давления;
  • объема;
  • внутренней энергии.

В статистической механике

В статистической механике это понятие связано с вероятностью получить определенное состояние. Например, для нескольких предметов или частиц она зависит от числа способов их расположить.

Есть несколько определений этой величины. Наиболее простое определение Больцамана. Она равна логарифму вероятности состояния, умноженному на постоянную Больцмана: S=k*ln(W).

Полезное видео: что такое энтропия

Абсолютное значение

Энтропия - величина неотрицательная (больше или равна нулю). Чем ближе температура к абсолютному нулю, тем она тоже ближе к нулю. Это третье начало термодинамики. В первоначальном виде его сформулировал Макс Планк в 1911 году.

Также третье начало термодинамики называют принципом недостижимости абсолютного нуля. Это значит, что при любых процессах, связанных с изменением неупорядоченности, невозможно достигнуть абсолютного нуля (0К, или -273,15 С). Можно только бесконечно приближаться к этой температуре. Ученые договорились, что при 0 К неупорядоченность равна 0.

Важно! Абсолютное значение неупорядоченности можно посчитать как изменение энергии при данной температуре.

В термодинамике обычно не имеет значения абсолютная величина, важно только ее изменение. Однако можно найти и абсолютное значение. Оно вычисляется по разным формулам для твердого, жидкого и газообразного состояния вещества. Эта величина измеряется в Дж/К или Дж/градус, то есть в тех же единицах, что и теплоемкость. Удобно поделить эту величину на массу или количество моль вещества. Поэтому используют единицы Дж/(моль*К) или Дж/(моль*градус) в зависимости от того, в чем измеряется температура - в кельвинах или градусах.

В химии

Что такое, к примеру, энтропия в химии? Это понятие применяется в химической термодинамике. Здесь важно изменение этой величины. Если оно положительно, то и система становится менее упорядоченной. Знать это важно для определения направления химических реакций и изменения химического равновесия. Этот термин связан с понятием энтальпии - энергии, которую можно превратить в тепло при определенном постоянном давлении.

По изменению неупорядоченности можно определить, может ли реакция протекать самопроизвольно. Этого нельзя сделать только по изменению энергии, так как существуют и реакции, протекающие с поглощением тепла, и реакции, протекающие с его выделением. Согласно второму началу термодинамики, состояние с наибольшей неупорядоченностью - это наиболее устойчивое состояние замкнутой системы. Также любая замкнутая система стремится к наименее упорядоченному состоянию. Поэтому при самопроизвольных процессах беспорядок возрастает.

В теории информации

Информационная энтропия характеризует непредсказуемость какой-либо системы. Например, это может быть вероятность появления какого-то символа из алфавита в тексте. При этом эта функция равна количеству информации, которое приходится на один символ. Клод Шеннон - ученый, который ввел этот термин в теории информации, - даже сначала хотел называть эту величину информацией.

Шеннон предположил, что, увеличивая количество информации, мы уменьшаем неопределенность. Упорядочивая систему, мы также уменьшаем неопределенность.

Важно! Чем более предсказуемо какое-то событие, тем оно менее информативно, и тем меньше беспорядок.

С помощью этой неопределенности можно предсказывать события, например, исход какого-то эксперимента. Для этого события делят на отдельные части и считают неопределенность для них.

Информационная энтропия связана с числом доступных состояний. Чем это число больше, тем она больше. Например, если мы будем играть в шахматы по правилам, для шахматной доски эта величина будет меньше, чем если переставлять фигуры хаотически. Неопределенность для монетки, которая может упасть только на одну или другую сторону, меньше, чем у игральной кости с 6 гранями, а у кости с 20 гранями эта величина еще больше.

Существует также энтропия языка. Это понятие обозначает количество информации на единицу текста на этом языке (одни символ) и измеряется в битах на букву. Для разных языков она разная.

В языке одни символы появляются чаще, другие реже, также есть определенные часто встречающиеся сочетания символов. Проводя анализ вероятности появления того или иного символа, можно декодировать зашифрованный текст. Информационная неупорядоченность также помогает устанавливать необходимую пропускную способность каналов для передачи зашифрованных сообщений.

Для анализа данных в самых разных сферах, от медицины до социологии, используется информационно-энтропийный анализ. Простыми словами можно сказать, что, анализируя увеличение или уменьшение беспорядка, можно установить связи между явлениями.

Понятие «информационная энтропия» используется также в математической статистике и статистической физике. Эти науки также имеют дело с вероятностью различных состояний и используют методы теории вероятности.

В экономике

В экономике используется понятие «коэффициент энтропии». Он связан с концентрацией продавцов на рынке. Чем больше концентрация, тем меньше этот коэффициент, или индекс. Он зависит от распределения долей между фирмами на рынке, и чем больше разница в величине этих долей, тем больше и коэффициент энтропии.

Если поделить этот индекс на количество фирм на рынке, получится относительный показатель. Он обозначается буквой Е. Его значение находится между 0 и 1. Значение Е=0 соответствует монополии, а Е=1 - совершенной конкуренции.

Что говорит википедия

В википедии можно найти разные определения этого понятия. Самое общее - это мера необратимого рассеяния энергии, отклонения реального процесса от идеального. Также в википедии можно найти:

  • статьи об этом термине в классической термодинамике;
  • в биологической экологии;
  • энтропию Вселенной;
  • языка;
  • дифференциальную;
  • топологическую;
  • информационную.

Полезное видео: представление об энтропии

Заключение

Термин «энтропия» впервые был использован в термодинамике Рудольфом Клаузиусом. Из физики он пришел и в другие науки. Это понятие обозначает неупорядоченность, хаотичность, непредсказуемость и тесно связано с вероятностью. Энтропийный анализ помогает изучать данные и находить связи между явлениями, определять направления физических и химических процессов.

Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH 4NO 3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S ) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики ).

Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W . Поскольку число частиц в системе велико (число Авогадро N A = 6,02∙10 23), то энтропия пропорциональна натуральному логарифму термодинамической вероятности состояния системы W :

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль –1∙K –1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T . Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔS пл = ΔH пл/T пл Для химической реакции изменение энтропии аналогично изменению энтальпии

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q/T (приведенное тепло).

Здесь ΔS ° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S ° некоторых веществ.

Соединение


(Дж∙моль –1∙K –1)

Соединение


(Дж∙моль –1∙K –1)

C (т)алмаз

C (т)графит

изо-C 4H 10(г)

Таблица 4.1.

Стандартные энтропии некоторых веществ.

Из табл. 4.1 следует, что энтропия зависит от:

  • Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
  • Изотопного состава (H 2O и D 2O).
  • Молекулярной массы однотипных соединений (CH 4, C 2H 6, н-C 4H 10).
  • Строения молекулы (н-C 4H 10, изо-C 4H 10).
  • Кристаллической структуры (аллотропии) – алмаз, графит.

Наконец, рис. 4.3 иллюстрирует зависимость энтропии от температуры.

Следовательно, стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру T ΔS количественно оценивает эту тендецию и называется энтропийным фактором .

Задачи и тесты по теме "Химическая термодинамика. Энтропия"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величины количества теплоты, отданного рабочим телом холодильнику, к величине количества теплоты, принятого от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение: . Отношение Лоренц назвал приведённой теплотой . Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

Используя первое начало термодинамики для обратимых процессов, и деля обе части этого равенства на температуру, получим:

(3.70)

Теплота не может самопроизвольно перейти от более холодного тела к более нагретому без каких-либо других изменений в системе.